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Anxiety disorders are amongst the most common and disabling of psychiatric illnesses and have severe health
and socio-economic implications. Despite the availability of a number of treatment options there is still a
strong medical need for novel and improved pharmacological approaches in treating these disorders. New
developments at the forefront of preclinical research have begun to identify the therapeutic potential of
molecular entities integral to the biological response to adversity, particularly molecules and processes that
may pre-determine vulnerability or resilience, and those that may act to switch off or “unlearn” a response to
an aversive event. The glutamate system is an interesting target in this respect, especially given the impact
anxiety disorders have on neuroplasticity, cognition and affective function. These areas of research
demonstrate expanding and improved evidence-based options for treating disorders where stress in various
guises plays an important etiological role. The current reviewwill discuss how these pathways are involved in
fear circuitry of the brain and compare the strength of therapeutic rationale as well as progress towards
pharmacological validation of the glutamate pathway towards the treatment of anxiety disorders, with a
particular focus on metabotropic and ionotropic glutamate receptors. Specific reference to their anxiolytic
actions and efficacy in translational disease models of posttraumatic stress disorder, obsessive–compulsive
disorder, panic disorder and phobia will be made. In addition, the availability of ligands necessary to assist
clinical proof of concept studies will be discussed.
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1. General introduction

Anxiety disorders have a 12 month prevalance of 17% and a life-
time prevalance of 24.9%, and as a group are amongst the most
disabling of psychiatric illnesses (Kessler et al., 1994). Despite the
availability of psycho- and pharmacotherapies, underdiagnosis and
undertreatment of these conditions contribute to their enormous
personal and economic costs (Dupont et al., 1996). The major DSM-IV
anxiety disorders, including general anxiety disorder (GAD), post-
traumatic stress disorder (PTSD), social phobia, panic disorder (PD)
with/without agoraphobia, specific phobia, are frequently co-morbid
with mood disorders such as major depression and bipolar disorder,
but also substance and alcohol abuse disorders, that often compro-
mise effective management of the anxiety disorder (Kessler et al.,
2010). There is thus an urgent need to develop broadly acting, more
effective anxiolytics with a rapid onset of action, that are better
tolerated and with limited abuse potential. Further, these compounds
must be rationally designed to target the pathophysiological mech-
anisms of the illness.

Theunderlyingmolecular pathologyof thedifferent anxietydisorders
remains tobeelucidated.Nevertheless, it is clear thatmultiple risk factors
including genetic (Hettema et al., 2001; Smoller et al., 2009), psychoso-
cial and stress/trauma are important contributors towards disease
etiology (Harvey et al., 2003a; Gregory et al., 2008; Fig. 1). Excessive
and prolonged stress can lead to neuronal damage in vulnerable brain
SAD

GAD

Genes,
Fear, Stress,
Trauma

CogCog

Depression

Fig. 1. Risk factors, such as genes, fear, stress and early life trauma, impact neurobiological s
Coping and appropriate adaptation to stress leads to recovery (allostasis), while unresolve
Many of these disorders lie on a continuum, with cognitive dysfunction and anxiety closely
structures such as the hippocampus with potential negative impact on
learning and memory function (see McEwen, 2000). Whilst the range of
symptoms vary considerably across GAD, social anxiety disorder (SAD),
obsessive–compulsive disorder (OCD), PD, PTSD and form the basis for
their DSM IV classification, cognitive dysfunction is a common element
running across all these anxiety disorders as well as co-morbid
indications such asmajor depression andbipolar disorder (Fig. 1). Indeed
disruptionof cognition seems tobe reflected in the symptomdomains for
a number of anxiety disorders such as problems in concentration (GAD),
uncontrollable re-experiencing of severe trauma related memories
(PTSD) and obsessional thoughts (OCD) (APA, 1994). Thus, improving
cognitive function in these patients either through psychological and/or
pharmacological intervention will continue to form an important
element in the therapeutic management of anxiety disorders.

Apart from genetic predisposition, stress-related mental illnesses
are dependent on the nature and duration of the stressor, so that
environmental adversity may be a means of more effectively
separating stress sensitive from stress resilient populations (Connor
and Zhang, 2006). However, despite dramatic technological advances
in genetics and gene analysis over the past twenty years, progress
towards identification of specific disorder-related genes in anxiety but
also other psychiatric disorders has been modest and perhaps below
expectation (Foster et al., 2010; Lohoff, 2010). Complex disease
phenotypes, involvement of multiple genes of small effect as well as
small sample size in genetic studies have been suggested as reasons
OCD

PD

PTSD

nitive Dysfunctionnitive Dysfunction

Bipolar
Disorder 

Anxiety Disorder

ystems governing cellular resilience, such as neurotrophic function and neuroplasticity.
d adversity will lead to allostatic load and psychopathology in susceptible individuals.
connected.
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for this difficulty (Abdolmaleky et al., 2005). Candidate genes
currently considered to be associated with anxiety disorders, as
summarized by Smoller et al. (2009) include: 5HT2AR (PD), COMT
(PD, OCD), DRD2 and FKBP5 (PTSD). However, with the possible
exception of COMT in PD which is supported by a meta-analysis, the
reliability of the association with these genes remains questionable.

Fortunately, in recent years significant advances in understanding
the psychobiology of anxiety and stress-related disorders and in
developing effective interventions has been realized (Stein and
Hollander, 2002; Krystal et al., 2010). A hypothetical sequelae of
neurobiological events is presented in Fig. 2, where a concerted action
by predisposing risk factors (e.g. genetic, stress) and abnormal
activation of the hypothalamic-pituitary-adrenal (HPA) HPA-stress
axis may compromise neuronal resilience through neurotrophin
dysregulation and impaired neuroplasticity (see also Harvey et al.,
2003a). Based on preclinical and clinical research these changes have
been postulated to act as drivers for neurochemical/neuroendocrine
imbalance leading to cognitive and emotional impairment, ultimately
contributing towards the development of an anxiety disorder.

As comprehensively reviewed by Bermudo-Soriano and colleagues
in this special issue of the journal, there is substantial clinical evidence
that supports the involvement of glutamate in anxiety disorders. For
instance brain imaging analysis in patients with generalized social
phobia demonstrated increased glutamate levels in the anterior
cingulate cortex compared to healthy subjects as well as a correlation
between themagnitude of the glutamate signal and the severity of the
phobic symptoms (Phan et al., 2005). Furthermore, the change in
glutamate function could be reversed by anxiolytic treatment (Pollack
et al., 2008). In addition, a number of clinical studies have
demonstrated the utility of glutamate-active drugs in GAD, including
memantine (Feusner et al., 2009), riluzole (Coric et al., 2005; Mathew
et al., 2008), metabotropic glutamate receptor (mGlu) 2/3 agonists
(Dunayevich et al., 2008) and pregabalin (Baldwin and Ajel, 2007).
Similarly, glutamatergic agents have demonstrated usefulness in OCD,
including memantine (Stewart et al., 2010), riluzole (Coric et al.,
2005) and N-acetyl cysteine (LaFleur et al., 2006). Although PTSD is
most closely associated with increased noradrenergic signaling,
especially serving as a general alarm system and facilitating the
encoding of emotional memories, recent evidence suggests clinical
efficacy for glutamatergic agents, for example D-serine and D-
cycloserine (Heresco-Levy et al., 2002, 2009). In fact, D-cycloserine
shows promising anxiolytic activity in humans under different states
of anxiety (Bailey et al., 2007). However, the clinical use of
Genes
Fear, Stress

Trauma

Neurochemical
Imbalance

Neurotrophic
Dysregulation? 

Impaired Synaptic Connectivity & Neuro
Extinction ?

Stress, Trauma
Re-exposure

HPA-ax
activat

Fig. 2. A hypothetical sequalae of neurobiological events where predisposing risk factors indu
glutamate and monoamine release), leading to compromised neuronal resilience. The resul
trauma memory, thereby perpetuating a vicious cycle of trauma recollection and re-exp
dysfunction.
glutamatergic drugs in panic disorder has not been closely examined,
although two preliminary studies using mGlu 2/3 agonists failed to
demonstrate meaningful efficacy (Bergink and Westenberg, 2005;
Kellner et al., 2005).

Whilst the above-mentioned clinical observations need further
replication and evaluation in additional anxiety disorders, they concur
with extensive preclinical data demonstrating a strong connection
between glutamate and the neurobiological response to aversive
stimuli. Stress, fear and trauma together with multi-genetic predis-
position is recognized to contribute to the risk for development of
anxiety pathology (Figs. 1 and 2). Basic research in animals has
established a strong connection between stress and brain glutamate
function, its associationwith changes in neuroplasticity (see Spedding
et al., 2003) and the subsequent development of an anxiety disorder
(see Cortese and Phan, 2005; Krystal et al., 2010). Thus, acute stress
can stimulate glutamate release in the rat prefrontal cortex (Bagley
and Moghaddam, 1997) whilst repeat exposure to stress can
attenuate glutamate release as an adaptive response (Moghaddam,
2002). Glutamate is a potent modulator of events related to synaptic
plasticity (Harvey et al., 2003a; Harvey, 2008; Krystal et al., 2010;
Peng et al., 2011), while it also regulates hypothalamic function and
the neuroendocrine response to stress (van Den Pol et al., 1990;
Durand et al., 2008).

To establish the clinical utility and rationale for using glutamater-
gic active drugs in the various anxiety disorders, this review will
consider the role of glutamate in fear and anxiety circuitry in the brain
as well as how this relates to the known neuroanatomy and
neurobiology of these disorders. We will then present an overview
of ionotropic and metobotrobic glutamate receptor ligands and
whether these compounds display anxiolytic-like actions in animals.
Finally we will present evidence for efficacy using translational
disease models of specific anxiety disorders.

2. Glutamate signaling in the central nervous system

Maintenance of a physiological balance between inhibitory and
excitatory neurotransmission in the central nervous system (CNS) is
critical in determiningnormal brain function andbehavior. This relies ona
functional, perhaps yin–yang type, interaction between γ-amino butyric
acid (GABA) and glutamate, the major neurotransmitters involved in
mediating inhibitory and excitatory synaptic activity, respectively
(Harvey, 1996). Glutamate plays an important and diverse role in the
CNS. However, overstimulation of the glutamatergic system can provoke
Compromised
Neuronal Resilience

plasticity?

Anxiety
Disorder

Fear memories

is 
ion

Homeostatic
Dysregulation 

ce abnormal activation of the HPA-stress axis, neurochemical imbalance (e.g. increased
t is a disabling of critical cortical processes necessary to correctly process extinction of
eriencing. In PTSD, for example, this results in hyperarousal, anxiety and cognitive
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hyper-excitability, proconvulsant activity and neuronal damage
(Meldrum, 2000). At a cellular level glutamate has a strong influence in
controlling neurogenesis and neuroplasticity (Meldrum, 2000; Spedding
et al., 2003), whereas in terms of behavior it modulates cognition (e.g.
learning and memory) (Lynch, 2006) and affect, as well as response to
stress (Moghaddam, 2002), thusmaking it a promising target for treating
depression, anxiety and disorders of cognition. The glutamate pathway
analysis presented here will be restricted to the role of ionotropic and
metabotropic receptors in anxiety and stress-related disorders.

Receptors mediating the effects of glutamate form a superfamily
which has been categorized into two main subfamilies depending on
the mode of signal transduction (see Tables 1 and 2). Generally this is
either ion mediated (fast; Table 1) or metabotropic (relatively slower;
Table 2) which subsequently can modulate a variety of effector
systems (e.g. phospholipase C, adenylate cyclase, receptor activated
kinases, calcium) leading to intracellular transduction of extracellular
stimuli. The properties of glutamate receptors and their distribution in
the brain have been covered extensively in the recent literature (see
Kew and Kemp, 2005; Nicoletti et al., 2011; Niswender and Conn,
2010; Traynelis et al., 2010) and will only be briefly described here.

Structurally all glutamate receptors share a longN-terminal bi-looped
extracellular domain which forms the agonist binding pocket. However,
ionotropic and metabotropic receptor subfamilies differ substantially in
transmembrane topology with three and seven transmembrane do-
mains, respectively. The ionotropic receptors also have a short
cytoplasmic side re-entrant loop which is involved in ion-channel pore
formation. Use-dependent receptor desensitization, protein kinase
mediated phosphorylation and internalization form the array of cellular
mechanisms for augmenting or limiting ionotropic receptor activity (see
Traynelis et al., 2010). In the case of the metabotropic glutamate
receptors downstream feedback receptor phosphorylation appears to be
Table 1
Summary of the basic and pharmacological properties of ionotropic glutamate receptors.

Receptor subtype Agonist A

AMPA receptor
Glutamate (EC50): ~0.5 mM
Main gating ion: Na+NCa2+

Deactivation kinetics: fast
Subunits: GluR1-4
Splice variants: flip, flop for all
4 subunits
C-terminal splice variants for
GluR2 & GluR4

Orthosteric
L-Glutamate, AMPA
Cl-HIBO, SYM2081
ACPA

C
N
L
N
A

Allosteric
Aniracetam, CX516, CX614, CX717,
Org 24448, Org 26576, IDRA-21,
cyclothiazide, PEPA, LY404187,
LY392098, LY503430

N
G
C

Kainate receptor
Glutamate (EC50): ~0.5 mM
Main gating ion: Na+NCa2+

Deactivation kinetics: fast
Subunits: GluR5-7, KA1-2
c-Terminal splice variants
for GluR5, 6, 7

Orthosteric
L-Glutamate, kainate
(S)-5-iodowillardine SYM2081,
ATPA LY339434

C
L
N
N

NMDA receptor
Glutamate (EC50): ~1 μM
Main gating ion: Ca2+NNa+

Deactivation kinetics: slow
Subunits: NR1, NR2A-2D,
NR3A 8 NR1

Orthosteric
L-Glutamate, NMDA, HA 966, SYM2081

C
D

Co-agonist
D-serine, D-cycloserine HA966

C
L
C
M

Allosteric
Pregnenolone SO4

N
P
M
I
(
A
R
t

Table shows a summmary of some interesting representative ligands including those used a
allosteric : refer to compounds acting through the glutamate, glycineB receptor or a non-gl
an important regulatory mechanism for receptor desensitization and
endocytosis (see Kim et al., 2008).

A number of useful pharmacological tools have helped to elucidate
the function and therapeutic utility of glutamate receptors (Tables 1
and 2). These agents have assisted in driving a better understanding of
receptor properties but also novel modes of pharmacological action.
For example, the potential for allosteric control allows for modulation
of glutamatergic function with reduced target-related side-effect
liability. The list of ligands shown in Tables 1 and 2 is not intended to
be comprehensive but is designed to show primarily compounds that
are also amenable to in vivo analysis. However, as a lot of these
compounds have been inadequately characterized, there remains a
concern about selectivity versus related and broader off-target
receptors, inter-species variation in binding or functional assay
conditions, descrepancy between in vitro target engagement and in
vivo dose and brain penetration, and the presence of active
metabolites and enantiomers.

2.1. Ionotropic glutamate receptors

α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA),
N-methyl-D-aspartate (NMDA) and kainate receptors mediate fast
(millisecond scale) excitatory neuronal transmission, resulting in Na+

and/or Ca2+ ion conductance. In general AMPA and kainate receptors
tend to gate Na+ more avidly whereas NMDA receptors show
preference for stimulating Ca2+ entry (Kew and Kemp, 2005;
Traynelis et al., 2010; Table 1).

Glutamatergic stimulation of NMDA receptors activates a number
of subcellular messengers, such as calmodulin kinase II (CaMKII),
mitogen-activated protein kinase/extracellular receptor kinase
(MAPK/ERK), mammalian target for rapamycin (mTOR), nitric oxide
ntagonist Authors (year)

ompetitive
BQX, YM872, NS1209, ZK200775,
Y326325, LY215490, Topiramate

Bräuner-Osborne et al., 2000; Alt et al.,
2004; Kew and Kemp, 2005; Catarzi
et al., 2007; Traynelis et al., 2010;
Morrow et al., 2006; O'Neill et al., 2004;
Jordan et al., 2005; Woolley et al., 2009;
Planells-Cases et al., 2006

on-competitive
rgiotoxin 636, IEM-1460, IEM1754
on-competitive
YKI 52466 LY300164, LY303070
P-465022, NS3763 CP-526427

ompetitive
Y382884, UBP296 NS3763, NS1209

Bräuner-Osborne et al., 2000; Kew and
Kemp, 2005; Alt et al., 2004;
Planells-Cases et al., 2006; Traynelis
et al., 2010

on-competitive
one identified

ompetitive
AP5, DAP7 CGS 19755, CGP3789

Bräuner-Osborne et al., 2000; Kew and
Kemp, 2005; Traynelis et al., 2010

o-agonist
-701324, ACPC MDL105519, 7
KA ACEA 1021, ACPC 5,7 DCKA
DL 102 288
on-competitive
hencylidine, MK801, Ketamine,
emantine, CNS-1102

fenprodil, Ro25-6981
+)CP-101606 Ro-631908
llosteric
o631908, Ro256981 CI1041,
roxoptodil

s pharmacological tools in in vivo models (Tables 3 and 4). Orthosteric, co-agonist and
utamate biding domain, respectively.



Table 2
Summary of the basic and pharmacological properties of metabotropic glutamate receptors.

Receptor class Agonist Antagonists Authors (year)

Group I
Subtype: mGluR1
(a, b, c, d, e, f)
Function: excitatory
Signaling: Gq/G11; ↑PLC

Orthosteric
L-Glutamate, quisqualate,
DHPG

Competitive
LY367385, AIDA, MATIDA

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Allosteric
Ro-677476, Ro-0711401,
VU71, Ro-674853,

Allosteric
CPCCOET, BAY367620,
JNJ6259685

Niswender and Conn, 2010

Subtype: mGluR5 (a,b)
Function: excitatory
Signaling: Gq/G11; ↑PLC

Orthosteric
L-Glutamate DHPG, CHPG

Allosteric
MPEP, fenobam, SIB1757,
AFQ056, AZD2516, STX107,
ADX10059, SIB1893

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Group II
Subtype: mGluR2
Function: inhibitory
Signaling: Gq/G11, ↑PLC

Orthosteric
L-Glutamate LY354740,
LY379268, LY404039

Competitive
LY341495, MGS0039

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Allosteric
4-MPPTS (LY487379),
BINA, LY566332

Allosteric
Dihydrobenzo[1,4]diazepin-
2-one derivatives

Niswender and Conn, 2010; Hemstapat
et al., 2007

Subtype: mGluR3
Function: inhibitory
Signaling: Gq/G11, ↑PLC

Orthosteric site
L-Glutamate, LY354740,
LY379268 2R,4R-APDC,
DCG-IV 1S,3R-ACPD, NAAG

Competitive
LY341495, MGS0039

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Group III
Subtype: mGluR4
Function: inhibitory
Signaling: Gi/Go, ↓AC

Orthosteric
L-SOP, L-AP4

Competitive
MSOP, MAP4, CPPG

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Allosteric
PHCCC, VU0155041
SIB1893, MPEP

Niswender and Conn, 2010

Subtype: mGluR6 (a, b, c)
Function: inhibitory
Signaling: Gi/Go, ↓AC

Orthosteric
L-SOP, L-AP4

Competitive
MSOP, MAP4, CPPG

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Subtype: mGluR7 (a, b,c, d, e)
Function: inhibitory

Orthosteric
L-SOP, L-AP4, ACPT-1?

Competitive
MSOP, MAP4, CPPG, LY341495

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010

Signaling: Gi/Go, ↓AC Allosteric
AMN082

Allosteric
MMPIP

Niswender and Conn, 2010; Mitsukawa
et al., 2005

Subtype: mGluR8 (a, b, c)
Function: inhibitory
Signaling: Gi/Go, ↓AC

Orthosteric
L-SOP, L-AP4,
DCPG, PPG

Competitive
MSOP, MAP4, CPPG

Nicoletti et al., 2011, Niswender and
Conn, 2010; Lesage and Steckler, 2010
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(NO) synthase (NOS) and nuclear factor-κβ (NF-κβ), all important
regulators of synaptic plasticity (Oosthuizen et al., 2005; Kleppisch
and Feil, 2009; Li et al., 2010), while the latter is also involved in the
inflammatory response (Oosthuizen et al., 2005). Moreover, NMDA-
mediated Ca2+ influx activates NOS, cyclooxygenases, proteases,
lipases and protein kinases (Oosthuizen et al., 2005) that under
sustained activation lead to mitochondrial dysfunction and oxidative
stress. Neuronal NOS (nNOS) and its interaction with various
components of the NMDA receptor cascade, viz. postsynaptic density
protein 95, a postsynaptic density scaffold protein required for the
coupling of nNOS to the NMDA receptor, protein inhibitor of nNOS
(PIN), a cytoskeletal transport protein that inhibits nNOS activity, and
carboxy-terminal PDZ (PSD95-DlgA-zo-1) ligand of nNOS (CAPON), a
cytoplasmic protein that interferes with NMDA receptor-nNOS
coupling, collectively contribute to adaptive plasticity. Interestingly,
this cascade of events shows increased response in stress-sensitive
individuals, possibly representing a vulnerability factor to developing
an anxiety disorder (Wegener et al., 2010).

NMDA-mediated Ca2+ entry also activates CaMKII which, via
phosphorylation of GluR1, increases AMPA receptor conductance
(Fig. 3). Stargazin, a protein associated with AMPA receptors and a
CaMKII substrate, promotes AMPA receptor trafficking (Tomita et al.,
2005). By stimulating membrane depolarization, AMPA receptor
activation can reverse Mg2+-dependent block of the NMDA receptor
(Nowaket al., 1984) thus promoting Ca2+entry (Burnashev et al., 1995)
with the exit of K+ via the open NMDA receptor channel. This prolongs
currentflow through the receptor complex leading to a strengthening of
NMDA activity (Tanaka et al., 2000; Tomita et al., 2005). Consequently,
synaptic plasticity becomes a function that is dependent on the surface
expression of AMPA receptors and under mutual cooperation with
NMDA receptors (Selvakumar et al., 2009). Importantly, NO-mediated
S-nitrosylation of stargazin increases its binding to AMPA GluR1,
resulting in an increase in surface expression of AMPA receptors
(Selvakumar et al., 2009), thus suggesting NO to be an inter-cellular
messenger mediating NMDA-AMPA receptor cross talk.

2.1.1. NMDA receptors
The distinct subunit and splice variant related isoforms of the

NMDA receptor subfamily has been extensively reviewed (Ciabarra et
al., 1995; Sasaki et al., 2002; Traynelis et al., 2010). NMDA receptors
require the presence of extracellular glycine which, together with
glutamate, binds to two independant sites on NR1 and NR2 subunits
to initiate receptor binding. Historically, greater effort was focussed
on NMDA receptor blockers with anti-neurodegenerative or anti-pain
properties (Table 1), specifically competitive and non-competitive
antagonists. Open channel blockers (e.g. dizocilpine or MK801;
phencyclidine or PCP; ketamine) share a common risk for psychoto-
mimetic effects (Javitt, 2004), although memantine, by virtue of its
lower potency and selective open channel block of the NMDA
receptor, has a more tolerable side-effect profile (see Parsons et al.,
2007). Although direct orthosteric agonists, with the exception of
NMDA, are not broadly evident in the literature, a number of sulfated
endogenous neurosteroids (e.g. pregnenolone sulfate) have been
reported to enhance or inhibit NMDA receptor activity through an
allosteric mechanism (Malayev et al., 2002; Traynelis et al., 2010).
Alternatively, modulation of NMDA receptor function through the co-
agonist glycine site has attracted attention, e.g. glycine-B site agonists
and antagonists (such as D-serine and D-cycloserine, Table 1), while
elevation of synaptic glycine levels through inhibition of glycine
transporter-1 (GlyT-1) activity also indirectly enhances NMDA receptor
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activity. The latter rationale has led to the use of GlyT-1 inhibitors as
adjunctive treatment in schizophrenia (Javitt, 2008) and, as will be
discussed later, positive and negativemodulators of theNMDA receptor
may have importance in the treatment of anxiety disorders.

2.1.2. AMPA receptors
AMPA receptors regulate basal synaptic activity and, through

partial plasma membrane depolarisation, facilitate the activation of
other ligand-gated ion channels (LGICs) (e.g. NMDA) or voltage-gated
ion channel (VGICs) (e.g. Ca2+ channels). As described above, AMPA
receptor activation is necessary to relieve Mg2+-dependent inhibition
of the NMDA receptor ion channel (Traynelis et al., 2010). Distinct
subunits (GluR1-4) and isoforms (flip and flop) have been identified
for AMPA receptors (Table 1), and strongly influence agonist affinity,
ion gating properties, activation/deactivation kinetics and receptor
desensitization of the AMPA receptor (Traynelis et al., 2010). The four
AMPA receptor subunits and their isoforms show a more restricted
pattern of distribution in brain tissue, raising the possibility of
regionally distinct AMPA receptors (Geiger et al., 1995; Isa et al., 1996;
Xia and Arai, 2005). This differential distribution in neuronal cell types
is consistent with data showing that AMPA receptor activation can
enhance not only excitatory postsynaptic potentials (EPSPs) but also
inhibitory postsynaptic potentials (IPSPs) (Xia and Arai, 2005).
Although post synaptic AMPA receptors are now accepted, there is
emerging data suggesting that some of these receptors may also
reside on the presynaptic plasma membrane and thus play a role in
modulating glutamate release (Dorostkar and Boehm, 2008).

Four different classes of ligands have been identified for the AMPA
receptor: agonists, positive allosteric modulators (PAMs), and
competitive and non-competitive antagonists (Table 1). L-Quisqualic
acid and the more selective AMPA are the prototypical synthetic
agonists but are only suitable for in vitro investigation. The
demonstration by Ito et al. (1990) that the nootropic agent aniracetam
could potentiate AMPA receptor activity through an allosteric mode of
action was the impetus for discovering several chemical and distinct
pharmacological classes of AMPA receptor PAMs, some of which are
provided in Table 1.

While direct AMPA receptor agonists carry the risk for excitotoxi-
city, an allosteric mechanismmay have a lower liability in this respect
(Arai and Kessler, 2007). Preventing use-dependent AMPA receptor
desensitization is an important approach to prolonging and strength-
ening of AMPA-mediated signaling (see Lynch, 2002 for review). At
least two different classes of AMPA PAMs block AMPA receptor
deactivation and/or desensitization (Fig. 4). Aniracetam, as well as
CX516, CX717, Org 24448 and Org 26576, partially block AMPA
receptor desensitization (Arai and Kessler, 2007; Erdemli et al., 2007).
In contrast to these ‘partial’ potentiators, “full” AMPA PAMs, such as
cyclothiazide, CX614 and LY404187, produce a stronger receptor
activation due to full block of AMPA receptor deactivation and/or
desensitization (Quirk and Nisenbaum, 2002; Arai and Kessler, 2007).
Augmentation of AMPA receptor activity is potentially a useful
approach for improving cognitive dysfunction in psychiatric disorders
(Lynch, 2006). Thus LY451395 has been tested for efficacy in
Alzheimers patients (Chappell et al., 2007), while CX516 has been
tested as a cognition enhancer in schizophrenia albeit with mixed
results (Goff et al., 2008). There is also some evidence to support the
potential use of AMPA PAMs in affective disorders (Alt et al., 2006;
Machado-Vieira et al., 2009).
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Competitive and non-competitive AMPA receptor antagonists were
considered an interestingmechanism for the treatment of stroke and to
prevent neurodegeneration (Lau and Tymianski, 2010; Catarzi et al.,
2007). Whether AMPA antagonists are useful in anxiety has only been
examined to a limited degree.

2.1.3. Kainate receptors
Kainate receptors and their related subunit families, classified as

KA1-2 and GluR5-7, have been reviewed elsewhere (Kew and Kemp,
2005; Traynelis et al., 2010). Although not as extensive as for AMPA
and NMDA receptors, the kainate receptor has also undergone
medicinal chemistry effort (Bunch and Krogsgaard-Larsen, 2009).
Both agonists and antagonists with good affinity and activity have
been identified (Table 1), with antagonists presenting with possible
utility in epilepsy and neurodegeneration (Jane et al., 2009). However,
their use in models of anxiety has not attracted a lot of attention,
possibly related to lack of truly selective ligands.

2.2. Metabotropic glutamate receptors (mGluRs)

mGluRs and their 8 distinct gene related protein products
(mGluR1-8) (see Niswender and Conn, 2010 for review), can be
subdivided according to G-protein coupling and mode of signal
transduction into Group I (mGluR1 & 5), Group II (mGluR 2 & 3) and
Group III (mGluR 4, 6, 7, & 8) (Table 2). Group I receptors activate
Gq/G11-phospholipase C mediated signaling via actions involving
inositol phophate hydrolysis and the formation of diacylglycerol,
whilst Groups II and III receptors modulate cAMP signaling via the
Gi/Go intracellular pathway (Table 2). Unlike other mammlian G-
protein coupled receptor (GPCR) families, the heptahelical trans-
membrane domains of the mGluR are not directly involved in agonist
binding but is similar to the ionotropic glutamate receptors where the
native ligand binding domain resides in the extracellular N-terminal
portion (Kunishima et al., 2000; Malherbe et al., 2001). With the
exception of mGluR6, which seems to be retina specific, the mGluRs,
like the ionotropic glutamate subfamily, are widely expressed
throughout the mammalian CNS with presence in both neuronal
and glial cell types (Swanson et al., 2005). Some differences in cellular
localisation exist with Group I mGluRs showing a predominantly
postsynaptic/somatodendritic presence, whilst the Group II/III class is
mainly presynaptic and involved in modulating glutamate release
(Swanson et al., 2005).

Apart from their obligatory activation of phospholipase C-
mediated events, group I mGluRs can activate a range of downstream
effectors, most notably proteins involved in synaptic plasticity, such as
MAPK/ERK andmTOR, while groups II and III also couple to MAPK and
other systems that regulate synaptic plasticty (Niswender and Conn,
2010). Signal transduction cross talk also exists between metabo-
tropic and ionotropic glutamate receptors. The most well character-
ized example of this is the functional interaction between the NMDA
and mGluR5 receptor. Activation of the latter receptor on GABAergic
interneurones can lead to a downstream enhancement of NMDA
receptor evoked activity on pyramidal neurones (Doherty et al., 2000;
Mannaioni et al., 2001; Marino and Conn, 2002). This effect can be
blocked by the mGluR5 antagonist LY344545 (Doherty et al., 2000).
The exact mode of interaction between these two receptors may rely
on bi-directional positive feedback, possibly mediated by stimulation
of phosphatase calcineurin following mGluR5 receptor activation
(Alagarsamy et al., 2005). Importantly, new evidence suggests that
mGluR5, AMPA and NMDA receptors together play a role in modulating
synaptic plasticity via effects on theNO-cGMPpathway (Boix et al., 2011).
These findings emphasize that both mGluRs and ionotropic receptors,
together with down-stream messengers such as NO, are important me-
diators of synaptic plasticity and as such are involved in anxiety disorders.

As summarized in Table 2, a wide array of mGluR ligands including
orthosteric binders as well as allosteric modulators have been
discovered. However, the level of selectivity, particularly for com-
pounds that target the glutamate binding pocket, still shows scope for
improvement. Targetting the allosteric, non-agonist binding site may
prove more fruitful in this respect. Indeed, it has been hypothesized
that this approach may be useful in limiting the liability for
mechanism related side-effects for agonist based approaches.

2.2.1. Group I metabotropic receptors
The group I mGluR selective agonist, (S)-3,5-dihydroxyphenylgly-

cine [(S)-3,5-DHPG], has similar potencies at mGluR1 and mGluR5
and is themost selective group I mGluR agonist (Niswender and Conn,
2010). Indeed, most other group I mGluR agonists also have activity at
ionotropic glutamate receptors (i.e., quisqualate) or other mGluR
subtypes, e.g. [(1S,3R)-ACPD] (see Table 2). Potent and selective
orthosteric antagonists of group I mGluRs include LY367385 and
others (see Table 2), and are useful in differentiating mGluR1 relative
to mGluR5 effects. PAMs of mGluRs do not activate the receptor
directly in most systems but potentiate the response of the receptor to
orthosteric agonists, while NAMs antagonize the activity of agonists in
a noncompetitive fashion by binding to a site other than the agonist
binding site, in this case glutamate (Niswender and Conn, 2010).
CPCCOEt is a highly selectivemGluR1 NAM (Annoura et al., 1996), and
has recently been followed by similar compounds including Bay36-
7620, JNJ16259685, FTIDC, YM 298198 (see Table 2; Niswender and
Conn, 2010). SIB-1757 and SIB-1893 are highly selective mGluR5
NAMs, as are their structural analogs MPEP and MTEP (see Table 2),
which provide increased potency, selectivity, and brain penetration
(Lea and Faden, 2006). Despite the pending arrival of structurally
distinct and highly selective partial antagonists of mGluR5 (Rodriguez
et al., 2005), MTEP and MPEP are commonly used selective mGluR5
antagonists for probing the function of this receptor in the CNS. PAMs
of group I mGluRs include Ro 67-7476, Ro 67-4853, and VU71 (see
Table 2), while a novel range of multiple mGluR5-selective PAMs have
been identified (see Conn et al., 2008).

2.2.2. Group II metabotropic receptors
Prototypical selective group II mGluR agonists are DCG-IV and

(2R,4R)-APDC, while systemically active and highly selective group II
mGluRs agonists include LY354740 and LY379268 (see Table 2). The
latter are commonly used to access group II mGluR function in vivo
(Schoepp et al., 1999). Although these compounds are highly selective
for group II mGluRs relative to other mGluR subtypes, they cannot
differentiate between mGluR2 and mGluR3 (Niswender and Conn,
2010). Multiple selective PAMs of mGluR2 have also been identified
(see Table 2), while group II mGluR NAMs that block bothmGluR2 and
mGluR3 have been reported, such as LY341495 and MGS0039.
Recently, additional novel group II mGluR2 and mGluR3 NAMS have
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been reported, such as various deriviatives of dihydrobenzo[1,4]
diazepin-2-one (Hemstapat et al., 2007) and others (Niswender and
Conn, 2010).

2.2.3. Group III metabotropic receptors
L-AP4 is the prototypical orthosteric group III mGluR agonist

offering high selectivity over other mGluRs or ionotropic glutamate
receptors (Table 2; Schoepp et al., 1999). (S)-3,4-DCPG has recently
emerged as a novel agonist with 100-fold selectivity for mGluR8 over
mGluR4 (Thomas et al., 2001; Zhai et al., 2002; Table 2). Orthosteric
antagonists with high selectivity for group III mGluRs include CPPG
and MAP4 (see Table 2). PHCCC is an mGluR4 PAM (Table 2), while
SIB-1893 and MPEP are mGluR5 NAMs that possess mGluR4 PAM
activity as well (Table 2). AMN082 has been reported as a selective
allosteric agonist of mGluR7 suitable for in vivo use (Mitsukawa et al.,
2005; Table 2), while MMPIP is a mGluR7-selective NAM (Table 2).
Interestingly, AMN082 and MMPIP (Table 2) only have activity on
mGluR7 in some cellular contexts. Indeed, while they permit certain
mGluR7 directed signals, they may specifically block others, an idea
recently coined as permissive antagonism (Kenakin, 2005).

3. Extinction and its role in anxiety disorders

It is increasingly evident that some psychiatric illnesses, and
especially those that comprise an element of fear and/or aversive
behavior, involve a learned component. Memory or associations with
the aversive event/experience trigger a conditioned response that
invariably involves a maladaptive response leading to an exagerrated
stress response together with fearful and anxious behavior (Myers et
al., 2011). Recent work has described the important contribution of
glutamate in the extinction of fear memory, particularly via its actions
at NMDA, AMPA and mGlu receptors.

Pavlovian conditioning is a form of associative learning where a
conditioned stimulus (e.g. light comingon)becomes associatedwith the
occurrence of an unconditioned stimulus (e.g. shock) through a process
of extended training, to eventualy illicit a conditioned response (e.g.
avoidance behavior) to the presentation of the conditioned stimulus
(light) alone (Myers et al., 2011). However, the conditioned response
(avoidance behavior) can be extinguished by repeated exposure to the
lightwithout co-presentationwith the unconditioned stimulus (shock).
This process, called extinction, has provided clinicians with a means
whereby they can reduce the impact of conditioned responses, for
example in patients suffering from PTSD, thereby reducing subsequent
maladaptive behavioral responses, e.g. anxiety, hyperarousal, avoid-
ance, flashbacks etc. (Fig. 2; Myers et al., 2011).

The amygdala, medial prefrontal cortex (mPFC) and hippocampus
mutually interact to mediate extinction learning and memory and its
modulation by context. It is especially the baso-lateral amydala (BLA)
and the intercalated cell masses (ICM), the latter responsible for gating
impulse traffic from the BLA to the central nucleus of the amygdala, that
are critical in this response (Myers et al., 2011). TheBLA is central for the
essential neuroplastic processes that underly the consolidation and
extinction of fear memory, and receives sensory information about
discrete conditioned stimuli as well as contexual and spacial cues. After
acquisition of fearmemory, the BLA triggers a conditioned fear response
via projections to the central nucleus of the amygdala, which in turn
innervates the hypothalamus and other brain stem regions such as the
periaquaductal gray to elicit a behavioral fear response (e.g. freezing,
potentiated startle response, aversion). In the current context, it is
important to note that repeated omissionof theunconditioned response
(shock) during extinction relays information pertaining to the condi-
tioned stimulus to the BLA and infra limbic cortex through a process
involving NMDA-directed synaptic plasticity. Following NMDA receptor
activation, the NO signaling pathway regulates pre- and postsynaptic
alterations in theamygdala following fear conditioning (Otaet al., 2010),
and is important for both acquisition and consolidation of contextual
fear memory (Kelley et al., 2010) as well as being involved in anxiety
responses (Guimarães et al., 2005; Kleppisch and Feil, 2009). Suppres-
sion of fear conditioned responses takes place via infra limbic mediated
inhibition of amygdalar throughput by activating inhibitory GABA
neurons in the ICM (Myers et al., 2011). Through the action of GABA
interneurons, themPFC sends projections that terminate in the BLA and
on the ICMallowing themPFC to exert inhibitory control over amygdalar
throughput, culminating in extinction (Quirk and Mueller, 2008).
Extinction is therefore associated with increased frequency and
expression of GABA-related gene expression (Chhatwal et al., 2005;
Heldt and Ressler, 2007) and GABA-A receptor membrane insertion in
the BLA (Lin et al., 2009), and can be impaired by GABA'ergic
interventions (Harris and Westbrook, 1998; Likhtik et al., 2008). The
hippocampus also sends projections to the amygdala as well as to the
mPFC (Myers et al., 2011). It is therefore not surprising that the
hippocampus, traditionally associated with spatial and contexual
memory (Kim and Fanselow, 1992), also has a role in context
dependence of extinction. The hippocampus encodes contexual infor-
mation during extinction training and uses that information to promote
or oppose expression of extinction memory, probably via its inter-
connections with the amygdala and mPFC (Myers et al., 2011). Both
GABAergic and glutamatergic neurotransmission thus play a central role
in disorders involving fear memory consolidation and extinction.

4. Role of glutamate receptors in anxiety and
stress-related disorders

The excitatory action of glutamate in the mammalian brain and
spinal cord have been known for more than fifty years (e.g. Curtis and
Watkins, 1960). Glutamate exerts a diverse array of biological
responses that are responsible for its central role in neurodevelop-
ment, synaptic plasticity and memory, as well as neurotoxicity and
neurodegeneration (Meldrum, 2000). At both the metabolic and
physiological level, the fate of glutamate as well as its functional
activity is closely tied to that of GABA, the primary inhibitory
transmitter in the brain (Leonard, 2003). GABA originates from
glutamate synthesis via glutamate decarboxylase, with excessive
glutamate release in turn promoting GABA synthesis (Leonard, 2003).
Together with GABA, glutamate plays a major role in regulating the
function and bio-behavioral response of other central neurotransmit-
ters whereby glutamate interneurons synapse on other neuronal
systems to influence the down-stream signaling of for example
noradrenaline, dopamine and serotonin, acetylcholine, histamine as
well as neuropeptides (Harvey, 1996).

The blockade of NMDA receptors in the prefrontal cortex increases
the release of dopamine and acetylcholine in the nucleus accumbens,
thereby implying that hypofunction of prefrontal NMDA receptors is
associated with a dysfunction of the corticolimbic circuit (Del Arco
and Mora, 2008) that can translate to various neuropsychiatric
manifestations. Consequently, partial NMDA receptor agonists may
be useful in treating certain of these disorders. If we now consider
mGluRs, both group III and group II mGluR agonists suppress the
frequency of 5-HT-induced excitatory postsynaptic currents in the
prefrontal cortex (Zhang and Marek, 2007) suggesting a close
coupling between mGluRs and 5-HT2A receptors that may contibute
to the actions of psychotropic drugs. Similarly, 5HT and DA are both
strongly regulated by GABA as well as the glutamate-NO pathway
(Wheeler et al., 1995; Tao and Auerbach, 2000; Prast and Philippu,
2001), such that dysfunction in GABA/glutamate transmission may be
a significant contributor to serotonin and dopamine dysfunction. The
opposite also applies, with raised cerebral levels of serotonin inducing
a decrease in glutamate transmission and a parallel increase in GABA
transmission, particularly in the hippocampus, frontal cortex and
cerebellum (Ciranna, 2006). These actions may underlie serotonergic-
mediated modulation of cognitive function, analgesia, motor control,
anxiety and mood (Ciranna, 2006).



783B.H. Harvey, M. Shahid / Pharmacology, Biochemistry and Behavior 100 (2012) 775–800
The role of glutamate, GABA (Shiah and Yatham, 1998; Krystal et
al., 2002) and glutamate-mediated activation of ionotropic receptor
driven acivation of sub-cellular calcium-dependent pathways, e.g. NO,
mTOR, is thus increasingly being recognized in the neuropathology
and treatment of anxiety and stress-related illnesses (Harvey, 1996;
Paul and Skolnick, 2003; Millan, 2006; Li et al., 2010). Indeed,
combined action on monoaminergic and nitrergic systems holds
promising possibilities (Harvey et al., 2010). This knowledge has
opened new avenues of investigation into the treatment of illnesses
previously regarded as strictly the domain of monoamine-selective
drugs, such as antidepressants, antipsychotics and anxiolytics. Based
on the pre-clinical literature, the following sections will consider with
what level of success we have been able to harness the glutamatergic
system for use in anxiety and stress-related disorders.

4.1. Therapeutic utility of glutamate in anxiety disorders

Preclinical and, to a lesser extent, clinical research has provided a
significant scientific rationale for the potential therapeutic utility of
glutamate modulators in the treatment of anxiety disorders (Millan,
2003; Bergink et al., 2004; Krystal et al., 2010). Stress, an important
risk factor in the genesis of an anxiety disorder, is known to
precipitate glutamate release in limbic regions of the rat brain
which may in part act to stimulate HPA axis and contribute to
glucocorticoid-induced neurotoxicity (Moghaddam, 2002; Harvey et
al., 2003a; Figs. 2 and 3). The process of extinction relies heavily on the
involvement of the glutamate system (Myers et al., 2011). This had led
to the general notion that attenuating glutamatergic neurotransmis-
sion in a regionally specificmannerwould shift the balance away from
excitatory towards inibitory GABAergic neurotransmission, leading to
anxiolysis. Animal tests of fear responding and anxiety indeed have
provided important support for this. These tests include punishment-
induced conflict (Geller–Seifter test) or ethological-induced conflict,
such as the elevated plus maze (EPM), the social interaction (SI)
paradigm, ultrasonic vocalization (USV), the acoustic startle (AS)
paradigm, aversive tests (e.g. predator exposure) and conditioned fear
models (e.g. fear-potentiated startle). In addition, a number of
pathophysiological (translational) models have been validated to
closely emulate the bio-behavioral characteristics of a specific human
disorder, for example social isolation rearing or maternal separation
(anxiety, depression and schizophrenia), single prolonged stress or
time dependent sensitisation and predator exposure models (PTSD),
lactate-induced panic in rats (panic disorder), predator odor
(phobia) etc. Indeed, we will address these translational models in
Section 6.

5. Ionotropic glutamate receptors in anxiety:
a preclinical perspective

5.1. NMDA receptor modulation

There are various approaches whereby NMDA receptor active
drugs may block activation of the NMDA-ionophore complex. These
include competitive inhibition of the NMDA site itself e.g. with AP5 (2-
amino-5-phosphonopentanoic acid), ifenprodil, dizocilpine (MK-
801), non-competitive inhibition by blocking the ion channel e.g.
with memantine, modulation of the NMDA/glycine-sensitive site e.g.
with D-cycloserine or spermine, blockade of the polyamine binding
site (see Bermudo-Soriano and colleagues in this special issue), and
modulation of NMDA subunit expression (Myers et al., 2011). Table 3
depicts pre-clinical studies that have explored these therapeutic
options in various animal tests of anxiety.

Both competitive and non-competitive NMDA antagonists are
effective anxiolytics over a wide range of anxiety tests in animals,
although non-competitive antagonists are much less reliable in this
regard (Table 3), while they also present with a greater risk of adverse
effects (Wiley, 1997). Indeed, ketamine seems to be more anxiogenic
in action (Table 3). Similarly, glycine-site antagonists show notewor-
thy anxiolytic effects, although there are a number of studies that have
failed to replicate these findings (Table 3). Interestingly, the partial
glycine site agonist, D-cycloserine, has also demonstrated anxiolytic
actions but at the same time has shown a penchant to enhance anxiety
and fear-related behaviors as well (Table 3). Variation in endogenous
glutamatergic tone may affect the action evoked by a partial agonist.
Thus under conditions of low and high activity at the glycine site, D-
cycloserine may act as an agonist or antagonist, respectively, which
may lead to different behavioral outcomes.

Mouse pups separated from their dam/siblings emit distress-like
ultrasonic vocalizations (USV), which may be reflective of an anxiety-
like state. Repeated maternal separation of rats selectively alters
glutamate receptor expression in the hippocampus but not in the
prefrontal cortex (Pickering et al., 2006). Indeed, separation-induced
USV are suppressed by various classes of NMDA antagonist, including
those acting at the glutamate recognition site (D,L-amino-phosphono-
valeric acid (AP5) andMDL 100,453) or at the ion channel (MK-801), or
by blocking the strychnine-insensitive glycine site (5,7-dichlorokynure-
nic acid, 5,7-DCKA; Kehne et al., 1991). High affinity NMDA receptor
antagonists such as MK 801 dose-dependently reduce USV, whereas
low-affinity antagonists, such as memantine and neramexane, seem to
enhance these distress calls (Takahashi et al., 2009).

The NMDA receptor is heavily implicated in learning, memory and
experience-dependent forms of synaptic plasticity, such as long-term
potentiation (LTP; Nicoll and Malenka, 1999), and was the first of the
glutamate receptors shown to be implicated in extinction in fear
conditioning experiments (Table 4). A vast array of studies have
repeatedly demonstrated that NMDA receptor antagonists impair
extinction within training, impair retention of extension after training,
aswell as impair reappearance of a previously extinguished conditioned
response (Myers et al., 2011). Furthermore, by recruiting voltage-gated
NMDA receptor ion channels, AMPA receptors will also contribute to
fear extinction and retention (Fig. 3). The general concensus now is that
NMDA receptor-dependent synaptic plasticity within the BLA is
involved in encoding fear extinction memory, while consolidation of
extinction memory involves NMDA receptor-dependent synaptic
plasticity within the infralimbic medial prefrontal cortex (Myers et al.,
2011). Interestingly, NMDA receptor activation is required when
extinction events are relatively novel but not when they are relatively
familiar (Chan and McNally, 2009). Thus, its involvement shifts when a
cue is extinguished a second time, i.e. fear acquisition plus extinction
followed by re-acquisition and re-extinction.

Contextual fear acquisition and expression in rats is dependant on
NMDA receptor mediated neuroplasticity in the BLA. Consistent with
this a number of studies have shown that competitive and
noncompetitive NMDA receptor blockade disrupts fear extinction
(Table 4; Myers et al., 2011) whilst augmentation of receptor activity
through the glycine-B co-agonist site with the partial agonist D-
cycloserine promotes extinction (Table 4; Myers et al., 2011).
Furthermore, genetically engineered mice with overexpression of
the NR2B subunit in the forebrain exhibit more rapid fear extinction
(Tang et al., 1999). Stressful conditions, especially situational stressors,
decreases fear extinction and decreases NMDA receptor subunit
expression in the hippocampus, which can be normalized by partial
stimulation of the NMDA receptor complex, e.g. using D-cycloserine
(Yamamoto et al., 2008). Indeed, stress and re-experience, a putative
animal model of PTSD, reduces NMDA receptor binding in rat
hippocampus (Harvey et al., 2004a). Similarly, D-cycloserine reverses
disruption of fear extinction following early life stress (Matsumoto et al.,
2008). Overall these preclinical data suggest that agents capable of
upregulating NMDA receptor function may prove useful as adjuncts to
cognitive behavioral therapy in the management of anxiety disorder.
Indeed this is supported by preliminary clinical evidence showing that
D-cycloserine can augment exposure therapy in patients with social



Table 3
Glutamate ionotropic receptor agonists and antagonists in animal models of anxiety.

Substance Effect on anxiety? Author(s) (Year)

Non competitive NMDA antagonists
Ketamine ↑ Anxiety (EPM, SI) Silvestre et al., 1997
MK801 ↓/No effect (CT, SI, EPM) Xie and Commissaris, 1992; Corbett and Dunn, 1993;

Koek and Colpaert, 1991; Jessa et al., 1996; Dunn et al.,
1989; Fraser et al., 1996; Criswel et al., 1994; Xie et al., 1995

PCP ↓/No effect (USV CT, EPM) Vry De et al., 1993; Kehne et al., 1991; Porter et al., 1989;
Sanger and Jackson, 1989; Wiley et al., 1995

Memantine, amantadine ↓/No effect (USV, CT, EPM) Vry De et al., 1993; Karcz-Kubicha et al., 1997
Ifenprodil ↓ Anxiety (EPM) Fraser et al., 1996

Competitive NMDA antagonists
NPC 17742 ↓ Anxiety (EPM, CT) Wiley et al., 1995

CPP and CGS19755 ↓ Anxiety (CT) Bennet and Amrick, 1986; Koek and Colpaert, 1991;
Corbett and Dunn, 1991

AP5 ↓ Anxiety (EPM, SI, USV, FPS) Dunn et al., 1989; Kehne et al., 1991; Fendt et al., 1996;
Campeau et al., 1992

AP7 ↓ Anxiety (ASP, CT, EPM, SI) Anthony and Nevins, 1993; Bennet and Amrick, 1986;
Dunn et al., 1989; Plaznik et al., 1994

CGP 37849 ↓ Anxiety (OF, CT) Jessa et al., 1996; Plaznik et al., 1994; Przegaliński et al., 1996

Glycine site ligands
ACEA 1021 (antagonist) ↓/No effect (EPM) Wiley et al., 1995
HA 966 (partial agonist) ↓ Anxiety (EPM, SI, CT, USV, ASP) Trullas et al., 1989; Dunn et al., 1992; Anthony and

Nevins, 1993; Karcz-Kubicha et al., 1997
5,7 DCKA (antagonist) ↓ Anxiety (OF, CT, USV) Plaznik et al., 1994; Kehne et al., 1995; Corbett, 1993
7 CKA (antagonist) ↓/No effect (ASP, CT) Koek and Colpaert, 1991; Anthony and Nevins, 1993
MDL 102,288/MDL 100,458
(antagonist)

↓ Anxiety (USV) Kehne et al., 1995; Baron et al., 1997

L-701, 324 (antagonist) ↓/No effect (CT, EPM) Kotlinska and Liljequist, 1998b; Karcz-Kubicha et al., 1997
ACPC (antagonist) ↓ Anxiety (CT, EPM, ASP) Anthony and Nevins, 1993; Przegaliński et al., 1996;

Karcz-Kubicha et al., 1997
D-cycloserine (partial agonist) ↑ FPS (extinction) and

↑ anxiety (EPM)
Walker et al., 2002b; Ho et al., 2005

↓ Anxiety (FPS, ASP, EPM) Anthony and Nevins, 1993; Karcz-Kubicha et al.,
1997; Fendt, 2000

↓ Reinstatement and
↑ extinction in cue-conditioned
freezing

Ledgerwood et al., 2003, 2004; Parnas et al., 2005

↑ Punished drinking Klodzinska and Chojnacka-Wojcik, 2000

AMPA/kainate receptors
Kainic acid (agonist) ↓ FPS Fendt, 2000
NBQX (antagonist) ↑ Anxiety (FPS, EPM) Fendt, 2000; Karcz-Kubicha and Liljequist, 1995
LY326325 (antagonist) ↑/↓ Anxiety (CT, EPM) Karcz-Kubicha et al., 1997; Kotlinska and Liljequist, 1998a
Topiramate (antagonist) ↓ Anxiety (APS) Khan and Liberzon, 2004
LY215490 (antagonist) ↓ Anxiety (CT) Benvenga et al., 1993

Polyamine site
Eliprodil (antagonist) No effect (CT) Wiley et al., 1998

Substances: MK 801, dizolcipine; PCP, phencyclidine; CPP, 3-(−2-carboxy piperazine-4yl)-propyl-1-phosphonic-acid; CGS 19975, cis-4-phosphonomethyl-2-piperidine-
carboxylkynurenate; AP5, 2 amino-5-phosphonoheptanoate; AP7, 2 amino-7-phosphonoheptanoate; HA 966, 3-amino-1-hydroxy-2-pyrrolidinone; 5,7 DCKA, 5,7-
dichlorokynurenic acid; 7 CKA, 7-chlorokynurenic acid; MDL'102,288, 5,7-dichloro-1,4-dihydro-(((4-((methoxycarbonyl)amino)-6-chloro-1H-indole-2-carboxylic acid; MDL”
100,458, (3(benzoylmethylamino)-6-chloro1H-indole-2-carboxylic acid; MDL 105,519, (E)-3-(2-phenyl-2-carboxyethenyl)-4,6-dichloro-1H-indole-2-carboxylic acid; L-701,324,
7-chloro-4-hydroxy-3-(3-phenoxy) phenyl-2(1H)-quinolone; ACPC, 1-aminocyclopropanecarboxylic acid; Memantine, amantadine; LY326325; LY215490, 3SR, 4aRS, 6RS, 8aRS)-6-
(2(1H-tetrazol-5-yl)ethyl)decahydro-isoquinoline-3-carboxylic acid;LY354740, 1S, 2S,5R,6S-2-aminobicyclo(3.1.0)hexane-2-6-dicarboxylate monohydrate; NBQX, dihydroxy-6-
nitro-7-sulfamoyl-benzo(F)quinoxaline; MPEP, 2-methyl-6-(phenylethynyl)pyridine.
Anxiety tests: CT, conflict test; EPM, elevated plus maze; USV, ultrasonic vocalization; SI, social interaction; ASP, acoustic startle paradigm; FPS, fear-potentiated startle; OF, open field.
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anxiety disorder (Hofmann et al., 2006; Guastella et al., 2008), PD (Otto
et al., 2010) and OCD (Kushner et al., 2007; Wilhelm et al., 2008).
Glycine transport inhibitors which, by raising synaptic glycine levels,
can also facilitate the activation of NMDA receptors and should thus in
principle mimick the effects of D-cycloserine.

5.2. AMPA receptor modulation

Studies carried out with non-NMDA (AMPA and kainate) receptor
ligands are outlined in Table 3. The AMPA receptor appears to have a
bidirectional effect on anxiety, with evidence of both anxiolytic and
anxiogenic activity for AMPA receptor agonists (Table 3). Generally,
agonists are anxiolytic (Fendt, 2000), while anxiogenic activity is more
associated with blockade of AMPA receptors (Kotlinska and Liljequist,
1998a; Fendt, 2000), e.g. at least two studies have found the AMPA
antagonist NBQX to be anxiogenic (Table 3). However, the AMPA/
kainate receptor antagonist LY326325 induces significant anxiolytic
activity in the EPM (Kotlinska and Liljequist, 1998a), while topiramate
similarly prevents anxiety-like behavior in an animal model of PTSD
(Khan and Liberzon, 2004). Direct activation of kainate receptors with
kainic acid is also anxiolytic (Fendt, 2000). Variations in anxiolytic/
anxiogenic response can be related to variation in endogenous
glutamatergic tone under different laboratory settings. Block of a high
glutamate tonewould yield anxiolysis whereas block of a low tonemay
precipitate the opposite effect. Loss of AMPA receptors from the plasma
membrane can potentially attenuate the capacity for neuroplasticity



Table 4
Ionotropic and metabotropic receptor agonists and antagonists in extinction based studies.

Class and drug Time of admin Effect on extinction and extinction retention Reference

NMDA
Comp. antagonist

AP5 Pre-ext ↓ ER; No effect/↓ expression of CR.
Time-dependent effects noted.

Lin et al., 2003; Falls et al., 1992; Lee and
Kim, 1998; Szapiro et al., 2003; Cammarota
et al., 2005; Bevilaqua et al., 2006.

AP5 Pre-ext or pre-re-ext ↓ ER and expression of CR. Laurent and Westbrook, 2008
CPP Pre- and 24 h post ext. ↓ ER. Time dependent effects noted. Santini et al., 2001
CPP Pre-ext Immed. post-ext No effect on within-session extinction;

↓ ER. ↓ ER.
Burgos-Robles et al., 2007

Noncomp.antagonist
MK-801 Pre-ext ↓ ER and fear acquisition. No effect/

↓ CR expression. Drug pre- or 4 h
post-extinction but not 12 h
post-extinction ↓ ER

Langton et al., 2007; Cox and Westbrook,
1994; Kehoe et al., 1996; Lee et al., 2006;
Baker and Azorlosa, 1996; Liu et al., 2009.

MK-801 Post-ext; prior to unsignalled US Blocked reinstatement. Johnson et al., 2000
MK-801 Pre-or post-US habituation ↓ ER if given pre- but not 4 h post-US

habituation
Storsve et al., 2010

MK-801 Pre-ext MK-801 ↓ extinction for novel but not
familiar CSs.

Chan and McNally, 2009

Ifenprodil Pre-ext ↓ Within-session extinction and ER; No
effect on expression of CR.

Sotres-Bayon et al., 2007

Ifenprodil Immed. post-ext ↓ ER. Sotres-Bayon et al., 2009
Pre-ext No effect
Immed. post-ext ↓ ER.

Ifenprodil Pre-ext ↓ Within-session extinction and ER. Laurent and Westbrook, 2008
Immed. post-ext No effect
Pre-ext Post-ext ↓ ER for 1st and 2nd extinction; No effect

on within-session extinction.
Ro 25-6981 Pre-ext ↓ Within-session extinction but not ER. Dalton et al., 2008

Partial agonists
D-cycloserine Pre-ext ↑ ER, blocked by antagonist Walker et al., 2002b; Myers and

Carlezon, 2010
D-cycloserine Pre-or post-ext to 2 h Facilitated ER. Facilitated extinction

retention; Impaired reinstatement.
Ledgerwood et al., 2003; 2004; 2005

D-cycloserine Immed. post-ext ↑ Extinction, but tolerance after multiple
dosing that dissipated over time. ↑ ER.

Parnas et al., 2005; Lee et al., 2006; Woods
and Bouton, 2006; Weber et al., 2007;
Bouton et al., 2008

D-cycloserine Pre-ext ↑ ER; blocked by MAPK or PI3K antagonist,
transcriptional inhibitor, or protein
synthesis inhibitor

Yang and Lu, 2005

D-cycloserine Pre-ext ↑ Extinction only in less anxious mice Tomilenko and Dubrovina, 2007
D-cycloserine Pre-ext ↑ 1st but not 2nd extinction unless 2nd

extinction involved a different cue
Langton and Richardson, 2008

D-cycloserine Pre-ext ↑ ER and extinction-induced increase in
BLA AMPA/NMDA receptor ratio.

Lin et al., 2010

Spermidine Post-ext Drug given immediately but not 6 h post-
extinction ↑ ER, blocked by NR2B antagonist.

Gomes et al., 2010

AMPA
AMPA antagonist

CNQX Pre-ext No effect Falls et al., 1992

AMPA potentiator
PEPA Pre-ext ↑ Within-session extinction and ER, and

blocked reinstatement.
Zushida et al., 2007; Yamada et al., 2009

mGluR
mGluR7 KO N/A Constitutive ↓ Extinction. Callaerts-Vegh et al., 2006; Goddyn

et al., 2008
mGluR5 KO N/A Constitutive ↓ Extinction. Xu et al., 2009

mGluR1 antagonists
CPCCOEt Pre-ext ↓ Within-session extinction occurring 48 h

but not 2 h after acquisition; ↓ ER after
48 h extinction.

Kim et al., 2007a

mGluR7ag.
AMN082 Pre-ext ↑ ER. Fendt et al., 2008

mGluR5 PAM
CDPPB Pre-ext ↑ ER. Gass and Olive, 2009
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andmay therefore be considered as a type of synaptic depotentiation or
loss of LTP (Huang and Hsu, 2001) which in the BLA is believed to act as
the substrate for fear memory storage (Sigurdsson et al., 2007). Limited
work has investigated the polyamine site in anxiety, eg. spermidine
(Table 4), with no clear evidence for anxiolytic activity (Table 3).
However, see Bermudo-Soriano and colleagues in this special issue of
the journal for further detail on the role of the polyamine site in anxiety
and anxiolytic action.

Although AMPA receptors are involved in basal synaptic neuro-
transmission (Traynelis et al., 2010), they are also involved in
experience-dependent forms of synaptic plasticity (Hu et al., 2007;
Selvakumar et al., 2009) and there is great interest in investigating
AMPA modulating drugs in models of fear extinction (Table 4). As
mentioned earlier, through intimate cross-talk interactions between
AMPA and NMDA receptors, and the well established role for NMDA
receptors in LTP and in the consolidation and extinction of fearmemory,
AMPA modulators have important considerations in treating disorders
of anxiety and cognition, especially since utilizing this interactionwould
limit the risk of excitotoxicity. BLA administration of an AMPA receptor
antagonist, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), has been
found to have little to no effect on subsequent retention of fear
extinction (Falls et al., 1992; Lin et al., 2003), while AMPA receptor
agonists facilitate contexual fear extinction (Zushida et al., 2007;
Yamada et al., 2009), possibly by promoting AMPA receptor internal-
ization. However, this appears paradoxical since high potency agonism
would promote internalization of the AMPA receptor thus attenuating
glutamate stimulation of both AMPA andNMDA receptors. Clearly these
mechanisms need to bemore fully characterized. Partial AMPA agonists
act in a similar manner as partial NMDA receptor agonists, resulting in
an increase in extinction and extinction retention (Table 4). Thus
harnessing an action on both AMPA and NMDA receptors would
promote extinction of fearmemory and can be achieved either by direct
partial stimulation of the NMDA receptor, by indirectly bolstering
NMDA receptors via a primary action on the AMPA receptor, or by
increasing NO-directed NMDA-AMPA receptor cross talk (Selvakumar
et al., 2009; Boix et al., 2011). As described earlier, theNOpathwayplays
a prominent role in the acquisition of conditioned fear memory (Kelley
et al., 2010; Ota et al., 2010). Given the importance of glutamate
signaling in the BLA for fear extinction, this is an intriguing observation.
Indeed conditioned fear is associated with increased cell-surface
expression of GluR1 and GluR2 subunits in the BLA (Rumpel et al.,
2005), with decreased expression in extinguished animals (Kim et al.,
2007a).

However, evidence would suggest that AMPA receptor binding is
sufficient but not necessary for AMPA receptor internalization. In fact,
simultaneous glutamate binding to NMDA receptors may be required
for AMPA receptor endocytosis (Beattie et al., 2000; Mangiavacchi and
Wolf, 2004), possibly explaining why pre-extinction training adminis-
tration of AMPA antagonists into the BLA has no apparent effect on
extinction. Thiswould suggest that AMPA receptor internalization in the
BLA is mediated primarily by glutamate binding to NMDA receptors.
Indeed, NMDA receptor activation has been found to cause AMPA
receptor internalization in cultured hippocampal and isolated amygdala
preparation (Beattie et al., 2000). Conversely, blockade of NMDA
receptors may indirectly increase glutamate activity at the AMPA
receptor. Some evidence for this comes from an investigtion examining
the molecular mechanism underlying the antidepressant activity of
ketamine, indicating that it could be blocked by pretreatment with an
AMPA receptor antagonist (Maeng et al., 2008). Consequently, NMDA
receptor antagonist-induced disruption of fear extinction may, at least
in part, be mediated by enhanced AMPA receptor stimulation. Counter
intuitively the AMPA receptor potentiator PEPA facilitates contextual
fear extinction (Zushida et al., 2007; Yamada et al., 2009). One possible
explanation of this apparent contradictory finding is that PEPA may
provoke removal of AMPA receptors from the plasma membrane by
agonist induced receptor internalization.
6. Metabotropic glutamate receptors in anxiety:
a preclinical perspective

Based on the hypothesis that stress or fear induced glutamate
release in cortical and limbic structures may be of relevance to the
pathology of anxiety disorders, the presynaptic mGluR2/3 autorecep-
tors have received the most attention from a drug discovery
perspective (Table 5). Indeed considerable progress has been made
in the identification of PAMs and agonists of these receptors, some of
which have been tested clinically in proof of concept studies.
LY354740 is the most advanced molecule which has a remarkable
preclinical profile strongly predictive of anxiolytic activity (Swanson
et al., 2005). Other metabotropic glutamate receptors also offer
promising approaches of relevance to anxiety disorders (see Palucha
and Pilc, 2007; Wierońska and Pilc, 2009).

The mGluR5 receptor increases neuronal excitability and NMDA
receptor currents in brain regions thought to be involved in anxiety,
such as the amygdala (Krystal et al., 2010), leading to the hypothesis
that mGluR5 antagonists might dampen the hyperactivity of gluta-
matergic transmission believed to underlie anxiety disorders. Consis-
tent with this, MPEP and relatedmGluR5 NAMs have robust efficacy in
several animal models of anxiolytic activity (Table 5). Group I
antagonists and modulators of Group III mGluRs also show promise
with regards to utility in anxiety disorders based primarily on
emerging preclinical data (Table 5). Thus mGluR5 knockout mice
demonstrate reduced stress-induced hyperthermia (Brodkin et al.,
2002a), while mGluR5 antagonists show efficacy in various animal
models of anxiety (Table 5). Considering the group III mGluRs,
mGluR7 receptor modulators have been found to affect multiple sites
involved in mood and anxiety neuronal circuitry (Table 5). Further-
more, mGluR7 knockout mice display upregulated corticosteroid
receptor-dependent feedback suppression of the HPA axis, increased
serotonin 5HT1A receptor transcripts as well as increased expression
of hippocampal BDNF (Mitsukawa et al., 2006).

By virtue of their ability to reduce glutamate release in cortical and
limbic structures that are activated during stress and/or fear, ligands
of the group II mGluR family, but most notably allosteric potentiators
and agonists of the mGluR2/3 receptor, display rapid anxiolytic
activity with minimal abuse or tolerance potential (Swanson et al.,
2005). LY354740, an mGluR2/3 agonist, reduces activation of the
basolateral and central nucleus of the amygdala, the prefrontal cortex
and lateral and medial perforant paths of the hippocampus, brain
regions responsive to stress or fear stimuli (Schoepp et al., 2003),
where it blunts disinhibition of synaptic excitatory activity (Linden et
al., 2004). The compound also demonstrates significant anxiolytic
activity in several rodent stress and anxiety models including fear-
potentiated startle, latate induced panic, stress-induced hyperthermia
and aversion in the EPM (Table 5; Linden et al., 2004; Nordquist et al.,
2007), while in non-human primates it reduces yohimbine-induced
anxiety and stress-related elevations in cortisol (Coplan et al., 2001).
Moreover, the anxiolytic effects of LY354740 in the EPM are prevented
by an mGluR antagonist, while this response is also not evident in
mGluR2 or mGluR3 knockout mice (Linden et al., 2005). Interestingly,
the anxiolytic ativity of LY354740 requires the expression of one or
both mGluR2/3 receptors (Linden et al., 2005).

When considering the contribution of mGluRs to fear extinction, the
fact that some subtypes, such as mGluR5, have been implicated in
learning and memory and experience-dependent forms of synaptic
plasticity (Simonyi et al., 2005) provide a robust rationale for the
involvement ofmGluRs in the neural mechanisms governing extinction
learning (Table 4). Local BLA infusion of the mGluR1 antagonist,
CPCCOEt, before extinction training dose-dependently impairs extinc-
tion training and subsequent extinction retention, although only when
extinction training occurs 48 h after acquisition and not 1 h afterwards
(Kim et al., 2007b; Table 4). The latter implies that the mechanisms of
short- and long-interval extinction may be different. CPCCOEt also



Table 5
Metabotropic glutamate receptor (mGluR) agonists and antagonists in animal models of anxiety.

Substance Effect on anxiety? Author(s) (Year)

Group 1
mGluR 1 antagonists

3-Ethyl-2-methyl-quinolin-6-yl-(4-methoxycyclohexyl)-
methanone methanesulfonate (EMQMCM)

↓ Anxiety (EPM, CT) ↓ FPS and freezing (CFC) Pietraszek et al., 2005

JNJ16259685 No anxiolytic effect (EPM) but ↓ anxiety (CT) Steckler et al., 2005
LY456236 ↓ Stress-induced hyperthermia ↓ anxiety (CLS)

↓ anxiety (CT)
Rorick-Kehn et al., 2005; Varty et al., 2005

4-[1-(2-Fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-
4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1
(2H)-carboxamide (FTIDC)

No anxiolytic effect (EPM) ↓ stress-induced hyperthermia
↓ anxiety (USV)

Satow et al., 2008

1-Aminoindan-1,5-dicarboxylic acid (AIDA) ↓ Anxiety (EPM,CT) ↓anxiety (FP) Kłodzińska et al., 2004a; Lima et al., 2008

mGluR5 antagonists
2-Methyl-6-phenylethynylpyridine (MPEP) ↓Fear-potentiated startle ↑Punished responding ↓Anxiety

(EPM, CT,SI, USV, ASP) ↓ stress –induced hyperthermia
↓/no effect (EPM ↓ anxiety (CT, CLP, FP) Inhibition of
fear-potentiated startle Increased social contact on
social exploration test

Satow et al., 2008; Brodkin et al., 2002b; Iijima
and Chaki, 2005; Rorick-Kehn et al., 2005;
Nordquist et al., 2007; Spooren et al., 2000;2002;
Pietraszek et al., 2005; Tatarczyńska et al., 2001a;
Wierońska et al., 2004; Pérez de la Mora et al.,
2006; Ballard et al., 2005; Steckler et al., 2005;
Varty et al., 2005; Lima et al., 2008; Schulz et al., 2001

3-((2-Methyl-4-thiazolyl)ethynyl)pyridine(MTEP) ↓/No effect on anxiety EPM ↓ FPS and ↓ freezing
(CFT) ↓ anxiety (CT, CLS, FP)

Pietraszek et al., 2005; Klodzinska et al., 2004b;
Molina-Hernández et al., 2006; Busse et al.,
2004; Varty et al., 2005

Fenobam Attenuation of stress-induced hyperthermia ↓ anxiety
(CT, conditioned emotional response task)

Porter et al., 2005

Group II
mGluR2/3 agonists

LY354740 ↓ Stress-induced hyperthermia ↓Fear-potentiated startle
↓ anxiety (EPM, CT, FP) ↓Lactate-induced panic

Rorick-Kehn et al., 2005;2006; Spooren et al., 2002;
Helton et al., 1998; Walker et al., 2002a; Tizzano
et al., 2002; Linden et al., 2004,2005; Monn et al.,
1997; Tatarczyńska et al., 2001b; Kłodzińska et al.,
1999; Benvenga et al., 1999; Porter et al., 2005;
Shekhar and Keim, 2000; Helton et al., 1998

Aminopyrrolidine-2.4-dicarboxylatc (APDC) ↓FPS Walker et al., 2002a
LY487379 ↓FPS Johnson et al., 2003;2005
LY544344 ↓ Stress-induced hyperthermia ↓ FPS Rorick-Kehn et al., 2006; Bueno et al., 2005
LY379268 No anxiolytic activity (EPM) ↓ stress-induced

hyperthermia ↓ anxiety (USV)
Satow et al., 2008

LY314582 ↓ Stress-induced hyperthermia Small anxiolytic
effect (CT)

Spooren et al., 2002; Benvenga et al., 1999

(2S,2'R,3'-dicarboxycyclopropyl)glycine (DCG-IV) ↓FPS Lin et al., 2005

mGluR2 potentiators
3-pyridyl-methyl-sufonamides ↓FPS ↓Stress-induced hyperthermia No anxiolytic

activity (EPM) ↓ anxiety (CT)
Johnson et al., 2005; Steckler et al., 2005

LY566332 ↓ Stress-induced hyperthermia Rorick-Kehn et al., 2005
N-[4'-cyano-biphenyl-3-yl]-N-(3-pyridinylmethyl)-
ethanesulfonamide (CBiPES)

↓ Stress-induced hyperthermia Johnson et al., 2005

N-[4-(4-carboxyamidophenoxy)phenyl]-N-
(3-pyridinylmethyl)-ethanesulfonamide
(4-APPES)

↓FPS Johnson et al., 2005

mGluR2 antagonists
LY341495 ↓ Stress-induced hyperthermia No anxiolytic activity

(EPM) No effect on stress-induced hyperthermia
Reversal of anxiolytic activity of LY354750 (EPM)
No effect on FPS

Iijima et al., 2007; Bespalov et al., 2008;
Linden et al., 2005; Tizzano et al., 2002

MGS0039 ↓ Stress-induced hyperthermia ↓ freezing (Cond Fear)
↓ burying behavior No anxiolytic activity (EPM)

Bespalov et al., 2008; Yoshimizu et al., 2006;
Shimazaki et al., 2004; Chaki et al., 2004

Group III
mGluR4PAM

N-phenyl-7-(hydroxylimino)cyclopropa[b]=
chromen-1a-carboxamide (PHCCC)

↓ Anxiety (CT) Stachowicz et al., 2004; 2006

mGluR7 agonists
L-serine-O-phosphate (L-SOP) ↓ Anxiety (CT) Tatarczyńska et al., 2001b
(1S,3R,4S)-1-aminocyclopentane-1,2,4-
tricarboxylic acid (ACPT-1)

↓ Anxiety (CT) Tatarczyńska et al., 2002; Pałucha et al., 2004

mGluR7 antagonists
(RS)-α-cyclopropyl-4-phosphonophenylglycine
(CPPG)

Blocks anxiolytic effect of ACPT-I (CT) ↓/no effect
on anxiety (CT)

Pałucha et al., 2004; Stachowicz et al., 2006, 2007

(continued on next page)
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Table 5 (continued)

Substance Effect on anxiety? Author(s) (Year)

mGluR8 agonists
(S)-3,4-dicarboxyphenylglycine (DCPG) ↓ Stress-induced hyperthermia No anxiolytic activity (CT) Rorick-Kehn et al., 2005; Stachowicz et al., 2005
(RS)-4-phosphonophenylglycine(PPG) No anxiolytic activity (CT) Pałucha et al., 2004

Anxiety tests: CT, conflict test; EPM, elevated plusmaze; USV, ultrasonic vocalization; SI, social interaction; ASP, acoustic startle paradigm; FPS, fear-potentiated startle; OF, open field;
FP, four plate test; CLS, conditioned lick suppression test.
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blocks ex vivo induction of synaptic depotentiation in BLA slices from
fear-conditioned animals (Kim et al., 2007a). Contrary to this, the group
1 mGluR agonist, DHPG, induces depotentiation in these slices (Kim et
al., 2007a). The mGluR5 antagonist, 2-methyl-6-(phenylthynyl)-pyri-
dine, blocks fear potentiated startle, thus preventing the acquisition and
expression of fear (Tizzano et al., 2002), while a similar response is
obtained using the Group II mGluR2/3 agonist, LY354740 (Helton et al.,
1998; Grillon et al., 2003).

Similarly, mGluR2 potentiators are anxiolytic in the fear poten-
tiated startle paradigm and other related models of anxiety (Helton
et al., 1998; Table 4). Both mGluR5 (Xu et al., 2009) and mGluR7
(Callaerts-Vegh et al., 2006; Goddyn et al., 2008) knockout mice
present with deficits in fear extinction. Contrary to this, the mGluR7
agonist AMN082 facilitates the extinction of amygdala driven
aversive memories (Fendt et al., 2008), although it has no effect
when administered in the absence of extinction training. This
provides a therapeutic rationale for the use of mGluR1 and mGluR7
agonists to treat conditioned fear-based disorders. Indeed, AMN082
has been found to promote extinction of aversive memories (Fendt
et al., 2008). Agonists for group II (mGluR2/3)) receptors and
antagonists for group I mGluR5 receptors have also shown activity in
animal and/or human conditions of fear, anxiety or stress (Swanson
et al., 2005). Indeed, intra-amygdala infusions of the mGluR Group II
agonists, LY354740 and (2R,4R)-4-aminopyrrolidine-2,4-dicarbox-
ylate, significantly disrupt fear-potentiated startle, and is prevented
by the Group II receptor antagonist LY341495. Pretraining admin-
istration of LY354740 however blocks fear learning (Walker et al.,
2002a).

7. Animal models of anxiety and stress-related disorders

Although the different anxiety and stress related disorders present
with anxiety as a common overall symptom, each illness nevertheless
presents with its own unique range of biological and behavioral
manifestations that underlie its differential diagnosis. Differences in
underlying neurobiology may imply a differential response to
glutamate modulating agents. Moreover, these illnesses all differ
with respect to the type and duration of stress that can be associated
with an earlier precipitating event. These considerations are impor-
tant when modeling the human illness in animals. Pathophysiological
animal models provide us with a useful tool to investigate the
neurobiology and treatment of a neuropsychiatric illness. They offer
the possibility of simulating a condition under controlled circum-
stances that will enable us to study symptoms as they develop and to
test prospective treatments (Yehuda and Antelman, 1993). The
animal model should in essence induce behavioral alterations that
resemble the symptoms of the human disorder, termed face validity,
and should mimic the pathophysiological abnormalities characteristic
of the disease, termed construct validity. Finally, a good animal model
should demonstrate differential response to drugs used to treat the
human condition while also show a lack of response to ineffective
treatment modalities, termed predictive validity (Oosthuizen et al.,
2005; Korff and Harvey, 2006). It is therefore important that any
efficacy of glutamate-active compounds, as assessed in standard
anxiety tests, be confirmed in suitably validated translational
(pathophysiological) animal models.
7.1. Stress and its relevance in pathophysiologicalmodels of anxiety disorders

Hans Selye (Selye, 1936) first explained the importance of the stress
response in health and disease that would later lead to the concepts of
stress vulnerability and resilience. The stress response is geared to
promote the development of coping mechanisms in order to resist a
stressor and to improve later response to the same stressor. This process
of allostasis (McEwen, 1998) requires behavioral, psychological and
physiological adaptation that is vital for survival. However, allostasis is
constantly challenged by repeated physical/psychosocial stressors that
seek to overwhelm these coping mechanisms leading to maladaptive
behavioral and neuro-endocrine responses, structural brain changes
and the subsequent development of a mental illness, referred to as
allostatic load (McEwen, 1998). Stress-related mental illnesses are
therefore dependent on genetic predisposition, while stress itself
underpins the basic phenomenology of a numbr of psychiatric illnesses.
However, the stressors involved in eacharemarkedly different, and is an
important consideration in the development of pre-clinical animal
models of anxiety/stressed based disorders (Uys et al., 2003).

Distinction can be made between limbic-sensitive and limbic-
insenstive (physiologic) stressors (Herman and Cullinan, 1997).
Limbic-sensitive stressors are most sensitive to stressors involving
high-order sensory processing of the event before the stress response
is initiated and thus require “processive” regulation by the prefrontal
cortex, hippocampus or amygdala (Herman and Cullinan, 1997).
Consequently, limbic-sensitive stressors such as restraint, forced
swimming, fear conditioning or exposure to a novel environment
constitute stimuli that become stressful only after comparison with
prior experience. On the other hand, limbic insensitive or physiolog-
ical threats that directly compromise survival, such as underwater
stress, predator exposure and ether exposure, do not undergo prior
interpretation by higher-order brain centers, but gain direct access to
the paraventricular nucleus in the hypothalamus to rapidly initiate
the stress response in an attempt to regain cardiovascular and
respiratory homeostasis (Herman and Cullinan, 1997). Thus, how
stressors are presented to the subject will evoke a unique bio-
behavioral response that will ultimately determine the gradual
progression from health to a mental/psychological disorder. Further-
more, the type of stressor will also dictate the type of biological
markers being studied, for example the importance of studying
appropriate brain regions following a stress response that requires
top-down frontal cortical mediated control of subcortical limbic
structures.

Early adverse experiences and especially vulnerability to these
events may “shape” a pre-existing genetic vulnerability to stress and
disease (Heim and Nemeroff, 2001; Niwa et al., 2010). Thus, young
animals raised under adversive rearing conditions, such as social
isolation or maternal separation, present with long-lasting behavioral
and physiological changes in adulthood that resemble depression
and/or schizophrenia, including increased anxiety, compromised
cognitive function, poor social interaction as well as various depres-
sive-like behaviors (Möller et al., 2011; Niwa et al., 2010). Depression is
strongly correlated to genetic disposition as well as chronic life stress
(Kendler et al., 2001), and is reflected in genetic models of depression
such as the Flinders Sensitive Line (FSL) rat. FSL rats demonstrate a
heightened sensitivity to stress, increased depressive-like behavior as
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well as altered serotonergic, cholinergic and glutamatergic function
(Overstreet et al., 2005; Wegener et al., 2010).

In PTSD, only 20–30% of trauma victims will go on to develop the
illness (Breslau et al., 1991), while a similar response is expectant of
an animal model of PTSD (Cohen et al., 2004). Similarly, compulsive
behaviors vary significantly within patients with OCD so that
spontaneous (naturalistic) compulsive-like or stereotypic behaviors
that varies within a given population may be a useful animal model of
OCD, e.g. the deer mouse model of stereotypy (Korff and Harvey,
2006). Thus, combined genetic and environmental adversity can
effectively separate sensitive from resilient populations (Connor and
Zhang, 2006) and will assist not only in understanding the
neurobiology of a given anxiety disorder but will aid in predicting
recovery and later resilience to developing a given disorder.

7.2. Posttraumatic stress disorder (PTSD)

Although first conceptualized as a normal reaction to an abnormal
event, PTSD is directly associated with exposure to an immediate life-
threatening event (APA, 1994), and is characterized by a unique
psychobiological basis (Yehuda and McFarlane, 1995). In PTSD a
disabling of critical cortical processes necessary to correctly process
extinction of traumamemory occurs in susceptible individuals, thereby
perpetuating a vicious cycle of trauma recollection and re-experiencing.
Thus,while it is normal to experience a range of symptomspost-trauma,
these gradually diminish over time and are not deemed to be disabling.
Such symptoms, however, persist indefinitely in PTSD leading to
significant comorbidity and disability (Kessler, 2002). There is also
evidence for the importance of multiple re-exposures to trauma in
predicting incidence and severity of the disorder (Maes et al., 2001).
Increasedhypothalamic-pituitary-adrenal (HPA) axis negative feedback
in PTSD (Liberzon et al., 1999) and the resulting cortisol ‘super-
suppression’ (Stein et al., 1997)precludes adequate shut-off of the stress
response (Yehuda, 1997; Parker et al., 2003), resulting in heightened
noradrenergic activity. This represents an important neurobiological
construct that drives many of the symptoms of PTSD, including
hyperarousal, avoidance and anxiety (Yehuda et al., 1992; Newport
and Nemeroff, 2000; Ravindran and Stein, 2009). However, animal
studies have emphasized that both the HPA axis response as well as the
monoaminergic response to severe trauma differs immediately post
trauma as opposed to post re-experiencing (Harvey et al., 2006), which
will have important implications in pharmacological treatment.

Cortisol plays a critical role in the interaction between the
hippocampus and amygdala during the encoding of emotional
memory (Wolf, 2008), particularly through its activation of the
glutamatergic system (Takahashi et al., 2002). Although the frontal
cortical-amygdala noradrenergic system facilitates the encoding of
emotional memories responsible for propagating posttraumatic
symptoms, with noradrenergic -α1 and -α2 receptors important in
expressing the intensity of the adverse experience, glutamate NMDA
and AMPA receptor mediated signaling is central to the neurobiology
of memory via the initiation of LTP (Myers et al., 2011). Moreover, the
neurobiology of stress also involves the effects of glutamate on
kindling and the permissive role of GABA, both of which occupy a
central role in fear memory circuitry (Myers et al., 2011).

In order to incorportate the above-mentioned attributes, animal
models of PTSD have utilized acute intense stressors, e.g. electric shock,
underwater trauma, and exposure of animals to a predator, aversive
challenges and situational reminders of a life-threatening event (stress–
restress) to more closely model the long-term effects on behavioral,
autonomic and hormonal responses seen in humans with PTSD (Uys
et al., 2003; Cohen et al., 2004; Oosthuizen et al., 2005; Yamamoto et al.,
2009). Here we will discuss data from the single prolonged stress (SPS)
and time-dependent sensitisation (TDS) models of PTSD (Table 6). SPS
has proven to be a well-validated animal model, presenting with
increased HPA-axis negative feedback and hypocortisolemia (Liberzon
et al., 1997, 1999), increased fear responding and anxiety as well as
cognitive impairment (Kohda et al., 2007; Yamamoto et al., 2009). The
TDS model, which emphasizes re-experience in its design, has
demonstrated impressive face, construct and validity for PTSD,
including increased HPA-axis negative feedback and hypocortisolemia
(Harvey et al., 2003b; 2006), altered cortical-hippocampal 5HT1A and
5HT2A receptor binding and impaired spatial memory performance
(Harvey et al., 2003b), while stress–restress related biobehavioral
changes canbe reversedby serotonin-activedrugs (Harveyet al., 2004b;
Uys et al., 2006). Importantly, stress and subsequent restress demon-
strate differential changes in HPA-axis response, as well as changes in
cortical and hippocampal monoamines and the subsequent genesis of
maladaptive aversive behavior (Harvey et al., 2006).

7.2.1. Ionotropic glutamate receptors in animal models of PTSD
A number of studies have demonstrated the contributory role of

ionotropic glutamatergic signaling using SPS alone or followed by re-
experience (TDS; Table 6). We have demonstrated that TDS reduces
NMDA receptor binding as well as GABA levels in the rat
hippocampus (Harvey et al., 2004a). SPS increases accoustic startle
in rats (Khan and Liberzon, 2004; Kohda et al., 2007) which can be
prevented by topiramate (Khan and Liberzon, 2004), an AMPA/
kainate receptor antagonist (Gibbs et al., 2000). Subsequently we
have also demonstrated activation of events down-stream of the
NMDA receptor, viz. NO synthase (NOS; Fig. 3), in animals exposed to
TDS (Harvey et al., 2004a, 2005a). Indeed, new evidence suggests
that the glutamate-NMDA-NOS cascade may be an important
vulnerability factor in stress-sensitive animals (Wegener et al.,
2010). Moreover, stress is a prerequisite prior event necessary to
evoke these changes (Wegener et al., 2010; Figs. 2 and 3).

The GlyT-1 plays an important role in modulating extracellular
glycine concentrations. Inhibition of GlyT-1 increases extracellular
glycine in the CNS and enhances NMDA mediated neurotransmission
(Sur and Kinney, 2007). SPS increases contextual freezing togetherwith
an increase in hippocampal levels of GlyT-1 (Takahashi et al., 2006;
Iwamoto et al., 2007), possibly mediating the development of impaired
extinction of fearful memory. PTSD is characterized by a loss of explicit
memory function in favor of increased consolidation of fear-memory.
Both SPS and TDS impair spatial memory performance in rats (Harvey
et al., 2003b; Kohda et al., 2007). In line with these changes in
hippocampal-based memory function, SPS induces deficits in hippo-
campal LTP and LTD (Kohda et al., 2007). Concerning fear memory, SPS
increases contextual fearmemorywhile TDS increases conditioned taste
aversionmemory (Brandet al., 2008), the latter explaining the increased
avoidanceandanxietyevokedbysensory-mediated recall of the trauma,
i.e. visual, olfactory, touch, auditory, and taste. Contextual fear memory
is also associated with blunted LTP in the amygdala following SPS
(Kohda et al., 2007). Similarly, impaired extinction is a major symptom
in PTSD (Bremner et al., 2000; Milad et al., 2006), while SPS has been
found to impair fear extinction (Yamamoto et al., 2008), the latter being
prevented by D-cycloserine, a partial agonist of the glycine site in the
NMDA ion channel (Yamamoto et al., 2008). Considering the important
role of altered HPA-axis functioning in PTSD, both SPS and TDS are
associated with increased HPA-axis negative feedback and hypocorti-
solemia (Liberzon et al., 1997; 1999;Harvey et al., 2003b; 2006). Altered
HPA-axis actvity in fact may be driving many of the subsequent
biobehavioral changes inducedbySPS/TDS (Harvey et al., 2004a;2004b;
Uys et al., 2006). Finally, glutamate, glutamine, and creatine levels are
decreased in the mPFC of SPS rats compared to controls, suggesting
decreased excitatory tone in this brain region (Knox et al., 2010).

AMPA receptors mediate fast EPSPs in most of the brain synapses
(Malenka and Nicoll, 1999) and play a critical role in the development
and expression of memory-related LTP. Further, as has been noted
earlier, AMPA receptors assist in the recruitment of voltage-gated
NMDA receptor ion channels (Tanaka et al., 2000; Fig. 3) thus
benefitting LTP (Granger et al., 1993; Staubli et al., 1994). Targeting



Table 6
Role of glutamate in pathophysiological animal models of anxiety and stress-related disorders.

Anxiety disorder Animal model Result Reference

PTSD TDS ↑Anxiety (EPM) Harvey et al., 2006
↑Conditioned taste aversion learning. Brand et al., 2008
↓NMDA receptor binding and ↓GABA
levels in rat hippocampus.

Harvey et al., 2004a

↑Hippocampal NOS activity, prevented
by nNOS inhibitor (early post acute stress)

Harvey et al., 2004a; 2005a

↑Hippocampal NOS activity reversed by iNOS
inhibitor, as well as by ketokonazole (steroid
synthesis inhibitor) (late post stress).

Harvey et al., 2004a

SPS ↑Anxiety (ASR), inhibited by topiramate,
an AMPA/kainate receptor antagonist.

Khan and Liberzon, 2004;
Kohda et al., 2007

↑Contextual freezing in rats with
↑hippocampal GlyT-1.

Iwamoto et al., 2007

↑Contextual fear; prevented by chronic
paroxetine (SSRI).

Takahashi et al., 2006

↓Fear extinction, prevented by D-cycloserine
(partial glycine site agonist).

Yamamoto et al., 2008

↓Glutamate, glutamine, and creatine in mPFC
of rats, suggesting ↓ excitatory tone.

Knox et al., 2010

↓Hippocampal LTP and LTD and blunted LTP
in the amygdala.

Kohda et al., 2007

OCD MBT MK-801, memantine and amantadine
(non-competitive
NMDA antagonists) ↓ burying behavior in mice

Egashira et al., 2008

NBQX (AMPA R antagonist) and riluzole
(glutamate release inhibitor) had no effect.
Inhibition of NOS prevents excessive burying
behavior in mice.

Krass et al., 2010

↑Burying behavior in mice is related to ↑ levels
of NO in brain. Burying and ↑ NO prevented
by paroxetine (SSRI).

Umathe et al., 2010

CX546, (AMPA receptor potentiator) and
Ro25-6981 (NR2B subunit-containing NMDA
receptor antagonist) ↓ burying behavior in mice.

Iijima et al., 2010

mGluR5 antagonist (MPEP) ↓ burying behavior. Spooren et al., 2000;
Pérez de la Mora
et al., 2006

mGluR2 antagonists, LY341495 and MGS0039,
↓ burying behavior

Shimazaki et al., 2004

SAM D-Cycloserine (partial glycine site agonist) ↓
compulsive lever pressing in rats. MK 801
(non-competitive NMDA antagonist)
had no effect.

Albelda et al., 2010

DMM Increased striatal glutamatergic activity
associated with spontaneous stereotypic
behavior in deer mice.

Presti et al., 2004

DMM ↑Oxidative stress evident in frontal cortex, but
not striatum, of high stereotypic deer mice.

Güldenpfennig et al., 2011

Panic disorder SLIP ↑Panic-like behavior and ↑firing of glutamatergic
neurons prevented by LY354740 (group II mGluR
agonist). Antipanic effect of LY354740
equal to alprazolam.

Molosh et al., 2010;
Shekhar and Keim,
2000

Phobia ELS ↑Phobic-like fear in BALB/cAnN mice later in life,
associated with ↓LTD and ↑AMPA receptor GluR1
subunit expression in BLA.

Thoeringer et al., 2010

↑Frontal cortical NMDA receptor binding in SIR rats
together with ↓social interactive and ↑ self-directed
behaviors, and ↑frontal cortical striatal oxidative stress.

Toua et al., 2010; Möller
et al., 2011

TMT ↑Unconditioned freezing and ↑glutamate and GABA
in trimethylthiazoline model of phobia

Venton et al., 2006

Abbreviations: TDS, time-dependent sensitization; SPS, single prolonged stress; MBT, marble burying test; SAM, signal attenuation model; DMM, deer mouse model; SLIP, sodium
lactate induced panic; ELS, early life stress; SIR, social isolation reared; SOD, superoxide dismutase; LTD, long-term depression; TMT, trimethylthiazoline model.
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AMPA receptors therefore represents an alternative approach to
bolster/maintain normal NMDA function without the risk of evoking
excessive glutamatergic activity. Although AMPA potentiators have
procognitive effects in animals (Staubli et al., 1994; Hamlyn et al., 2009;
Damgaard et al., 2010), their therapeutic potential in PTSD, or in animal
models of PTSD, are less well defined. Nevertheless, studies have found
that emotion enhances learning via noradrenaline mediated phosphor-
ylation of GluR1-containing AMPA-receptors leading to an improve-
ment in AMPA trafficking (Hu et al., 2007). Moreover, topiramate an
AMPA/kainate receptor antagonist prevents increased startle response
in animals subjected to SPS (Khan and Liberzon, 2004), further
supportive of a role for AMPA receptors in PTSD.

NO has been suggested to mediate NMDA-AMPA receptor
interactions critical for neuroplasticity (Boix et al., 2011). NO is an
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important sub-cellular messenger following stress or fear induced
glutamate release via the activation of NOS, while NMDA receptor-
mediated release of NO plays an important role in neuroinflamma-
tion (Harvey, 2008). Altered immune-inflammatory processes are
evident in patients with PTSD (Maes et al., 1999; Bauer et al., 2010),
while studies using TDS have found an increase in hippocampal NOS
activity 7 days after stress–restress that is inhibited by a neuronal
NOS inhibitor (Harvey et al., 2005a). Interestingly, this increased
activity cannot be reversed by memantine, a noncompetitive open-
channel NMDA receptor antagonist, yet is sensitive to inhibition by
an NF-κβ antagonist, suggestive of a possible dual role for
constitutive and inducible NOS isoforms following trauma (Harvey
et al., 2005a). We have noted that the elevation in NOS activity
remains sustained for 3 weeks post-trauma but now becomes
insensitive to inhibition by a nNOS blocker yet retains sensitivity
to a selective iNOS blocker (Harvey et al., 2004a). Importantly, late
post-stress increase in NOS activity is also inhibited by ketoconazole,
an inhibitor of glucocorticoid synthesis (Harvey et al., 2004a),
highlighting the important role for the hypothalamic-adrenal axis in
this response. Thus, inflammatory processes and the activation of the
inducible isoform of NOS appears to play a more prominent role
during chronic stress conditions such as PTSD, possibly mediating
the damaging effects of severe chronic stress on neuronal structure
and function e.g. hippocampal shrinkage (Harvey et al., 2004a;
Oosthuizen et al., 2005; Fig. 3).

7.2.2. Metabotropic glutamate receptors in animal models of PTSD
mGluR modulators are increasingly been identified as promising

new avenues to treat anxiety or its co-presenting symptoms,
especially due to the ability of these receptors to modulate NMDA
receptor function (Krystal et al., 2010). Indeed, mGluR1/5 receptor
agonists might promote fear extinction by bolstering neuroplasticity
related to long-term depression (Camodeca et al., 1999; Sung et al.,
2001; Popkirov and Manahan-Vaughan, 2011). Consequently, ligands
for groups I and II mGluRs may have value in the treatment of the
cognitive deficits experienced in PTSD (Gravius et al., 2010). However,
no work to date has been undertaken with respect to mGluRs in
animal models of PTSD. Nevertheless, studies using mGluR8-deficient
animals suggest that these receptors may be a potential target for
disorders involving altered glutamate and GABA transmission. Thus,
anxiety disorders where exaggerated contextual fear or where
disturbed declarative memory are evident may be particularly rele-
vant (Fendt et al., 2010).

7.3. Obsessive–compulsive disorder (OCD)

OCD is characterized by intrusive thoughts or images (obsessions)
that increase anxiety, and ritualistic actions (compulsions) that
decrease anxiety. The disorder also involves a dysfunctional (dopa-
mine-directed) reward system (Harvey et al., 2005b). However,
whereas most anxiety disorders are mediated by the amygdala and
related circuitry and respond to a range of antidepressants and
benzodiazepines, obsessive–compulsive disorders are mediated by
fronto-striatal circuitry and respond selectively to serotonin reuptake
inhibitors (SSRIs) (Hudson and Pope, 1990; Blum et al., 1995). There is
thus a move to include OCD and related conditions as a separate
diagnostic category of the up-coming DSM-V. The regulation of
fronto-striatal circuitry and of motor function involves a complex
interaction between serotonin, dopamine, and glutamate (Fekete et
al., 1981; Hollander and Wang, 1995; Cummings, 1996; McDougle et
al., 1999). Not surprisingly, up to half of OCD patients fail to respond to
treatment with an SSRI (Goodman et al., 1990; 1991). In these cases,
other classes of drugs, such as antipsychotics, offer distinct benefit in
treatment resistance cases (Stein, 2000).

The prefrontal cortico-striatal-thalamic-cortico (CSTC) circuit is
critical to our understanding of the pathophysiology and treatment of
OCD (Insel, 1992). The orbitofrontal cortex and the anterior cingulate
cortex are overactive in OCD (Alptekin et al., 2001; Lacerda et al.,
2003), leading to uncontrolled thoughts and behaviors and inappro-
priate ‘error detection’ signals (Rolls, 1999; Alptekin et al., 2001). The
anterior cingulate cortex may be more involved in linking the
cognitive and motor behavioral manifestations of OCD (Korff and
Harvey, 2006). The excessive, uncontrolled and repetitive motor
behaviors seen in OCD patients are thus propagated by regional
cortical hyperexcitability and a failure of inhibitory mechanisms to
control sensory inputs (Cummings, 1996; Alptekin et al., 2001). The
expression of emotion, particularly through the recognition of cues of
threat/danger, and motivation that engenders the non-specific
anxiety symptoms in OCD, is likely to involve fear circuitry, in
particular the amygdala (Korff and Harvey, 2006).

An imbalance between dopamine, GABA and glutamate input into
the CSTC is critical in determining thalamo-cortical output which
becomes overactive in OCD. With regard to glutamate, CSF levels of
glutamate and glycine are significantly elevated in OCD patients,
with evidence that autoantibodies against the basal ganglia and
thalamus may cause OCD by modulating excitatory neurotransmis-
sion (Bhattacharyya et al., 2009). Glutamate strongly regulates the
release of dopamine and serotonin within the CSTC circuit (Karreman
and Moghaddam, 1996; Amargós-Bosch et al., 2007), so that as with
the well-known therapeutic benefits of serotonin (e.g. SSRIs) and
dopamine (e.g. antipsychotics) active drugs in treating OCD, gluta-
mate active drugs may harbor a wealth of new and untapped
potential. Due to the neurobiological complexity of OCD, a definite
animal model of OCD remains a significant stumbling block in pre-
clinical drug development. Nevertheless, a number of animal models
are used (see Joel, 2006a and Korff and Harvey, 2006 for review),
although none of these models on their own fully address the
complete behavioral and biological characteristics of OCD.

For the purpose of this review, we will present data from the
marble burying test (MBT), the signal attenuation model (SAM) and
the deer mouse model (DMM), translational models where data
pertaining to the involvement of glutamate are evident (Table 6). The
MBT demonstrates some face and predictive validity for OCD. In this
test, burying begins as an appropriate investigative activity, but
following frustrated investigation of the non-reactive stimulus-object,
the behavior begins to persist as a compulsive stereotypy (Korff and
Harvey, 2006). Marble burying can also be used to model hoarding, a
subtype frequently encountered in OCD patients. Importantly, SSRIs
suppress the compulsive behavior in this model (Korff and Harvey,
2006). The SAM, which focuses on the phenomenological similarity
between “compulsive” lever pressing behavior in the model and
compulsions in OCD patients, has provided evidence for face,
construct and predictive validity for OCD (see Joel, 2006b for review).
The DMM is unique in that it represents a naturalistic animal model
whereby compulsive-like or stereotypic behaviors develop spontane-
ously, and which varies within a given population, thus akin to the
stereotypic behaviors observed in patients with OCD. Moreover, the
model has demonstrated noteworthy face, predictive and contruct
validity for OCD (Korff et al., 2008; 2009; Wang et al., 2009;
Güldenpfennig et al., 2011).

7.3.1. Ionotropic glutamate receptors in animal models of OCD
Magnetic resonance spectroscopy studies provide evidence of

elevated glutamate levels in several brain regions in patients suffering
from OCD, suggesting that agents that reduce glutamate hyperactivity
or its consequences in the CNS might be efficacious as novel
therapeutic interventions (Pittenger et al., 2006). Using the MBT in
mice, Egashira et al. (2008) observed that the noncompetitive NMDA
antagonists memantine, amantadine and MK801 inhibit marble-
burying behavior, although MK801 also markedly increased locomo-
tor activity. However the AMPA receptor antagonist NBQX, and the
glutamate release inhibitor riluzole showed no effect in this regard. In
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the SAM of OCD, systemic administration of the partial NMDA
receptor agonist, D-cycloserine, selectively decreased compulsive
lever pressing in rats (Albelda et al., 2010). MK 801, however, failed
in this regard although increased resistance to extinction. These data
are supportive of preliminary clinical evidence describing the
effectiveness of memantine as an augmenting agent in severe OCD
(Stewart et al., 2010). Again using the MBT, inhibition of NO, an
important down-stream messenger following NMDA receptor activa-
tion and a powerful pro-oxidant, prevents excessive marble burying
behavior in mice (Krass et al., 2010). In a related study, Umathe et al.
(2010) found that obsessive–compulsive behaviors in mice appears
related to increased levels of NO in brain, while the anti-compulsive
effects of paroxetine is related to its ability to decrease brain levels of
NO. In line with this evidence, clinical studies have demonstrated
significantly elevated plasma nitrate levels, a stable marker of NO, in
OCD patients that were also significantly and positively correlated
with Yale–Brown Obsession Compulsion Scale scores (Atmaca et al.,
2005). These data would concur that OCD may be causally related to
increased oxidative stress, which indeed has been described in both
humans with OCD (Chakraborty et al., 2009; Ozdemir et al., 2009) as
well as in the DMM (Güldenpfennig et al., 2011).

With regard to the AMPA receptor, the AMPA receptor potentiator,
CX546, significantly inhibits marble-burying behavior in the MBT,
while the NR2B subunit-containing NMDA receptor antagonist, Ro25-
6981, also reduces marble-burying behavior. These data suggest that
AMPA receptor potentiators and NR2B receptor antagonist may be
useful in treating OCD (Iijima et al., 2010).

7.3.2. Metabotropic glutamate receptors in animal models of OCD
Stimulating group I mGluRs, including mGluR1 and mGluR5, are

associated with activation of phospholipase C (PLC) leading to the
hydrolysis of cell membrane based phosphoinositide phospholipids
and the subsequent formation of inositol 1,4,5-trisphosphate (IP3)
and diacyl glycerol (Table 2). Interestingly, the glucose isomer and
second messenger precursor in PLC-mediated signaling, myo-inositol,
has demonstrated efficacy in OCD (see Harvey et al., 2002 for review).
Consequently, it can be expected that group 1 mGluRs that function
via this signaling system may have benefit in the treatment of OCD.
Recent evidence suggest this happens via an alternate neuronal
circuitry to the SSRIs (Carey et al., 2004). Indeed, the mGluR5
antagonist, MPEP, has been found to decrease burying behavior in the
MBT (Spooren et al., 2000; Pérez de la Mora et al., 2006). Interestingly,
the mGluR2 antagonists, LY341495 and MGS0039, which function via
inhibition of adenylate cyclase, have also demonstrated this response
in the MBT (Shimazaki et al., 2004).

7.4. Panic disorder

Several brain structures that organize defensive reactions and
represent the neural substrate of fear and anxiety have been implicated
in the functional neuroanatomy of PD, including prefrontal regions,
amygdala, hippocampus, and parahippocampal area, hypothalamus,
thalamus, and theperiaqueductal graymatter (PAG) (Graeff andDel-Ben,
2008). Panic disorder is a severe anxiety disorder characterized by
susceptibility to induction of panic attacks by subthreshold interoceptive
stimuli such as 0.5 M sodium lactate infusion. Chronic inhibition of GABA
synthesis in the dorsomedial hypothalamus/perifornical region of rats
induces a vulnerability to panic-like responses after sodium lactate
infusion (Johnson et al., 2008), and has been useful in providing an
animal model of panic disorder (Table 6). Sodium lactate induced panic
(SLIP) increases ‘anxiety’ (decreased social interaction) behaviors, heart
rate, and blood pressure responses in rats. Moreover, SLIP increases the
firing rates of glutamatergic neurons, as evinced by retrograde tracing
and in situ hybridization for vesicular glutamate transporter 2 (Molosh et
al., 2010). LY354740, a potent group II metabotropic glutamate receptor
agonist prevents the SLIP response in panic-prone rats (Shekhar and
Keim, 2000), probably by inhibiting glutamate release. The response to
LY354740 treatment was equally efficacious as alprazolam.
7.5. Phobias

Brain imaging techniques in ‘social anxiety’ and ‘social phobic’
individuals reflects increased activity in limbic and paralimbic regions,
with the predominance of the amygdala in these studies emphasizing
its central role in the pathophysiology of social anxiety disorder
(Freitas-Ferrari et al., 2010). Specific phobias, including animal
phobias, are the most common anxiety disorders, and have a strong
innate and genetic component. Phobia-related animal models have
assessed the neurobiology of innate fear of predators in rodents, such
as exposure to trimethylthiazoline or TMT (an odorant isolated from
fox feces). TMTdose-dependently induces unconditioned freezing and
other defensive responses in rodents (Table 6; Rosen et al., 2008),
while one such study has demonstrated that high responding animals
show a large, biphasic increase in glutamate and GABA in the nucleus
accumbens (Venton et al., 2006). Since adverse environmental factors
during early life may provoke genetically determined susceptibility to
psychopathology (Heim and Nemeroff, 2001), it is of particular
interest that adverse early life environment predicts the later
development of phobic-like fear responses in BALB/cAnN mice
(Thoeringer et al., 2010; Table 6). Emotion enhances learning via
noradrenaline mediated phosphorylation of GluR1-containing AMPA-
receptors leading to an improvement in AMPA trafficking (Hu et al.,
2007). Thoeringer et al. (2010) show that greater susceptibility to
developing exaggerated fear responses is accompanied by increased
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surface trafficking of the AMPA receptor GluR1 subunit in the BSA
complex (Thoeringer et al., 2010).

Deficits in interaction with peer groups as well as other core social
behaviors (akin to social phobia) are induced by early life stress
models, such as rats exposed to social isolation rearing (SIR) or
maternal separation (Niwa et al., 2010). SIR in rats induces marked
changes in cortical glutamate NMDA receptor binding (Toua et al.,
2010), together with significantly reduced social interactive behaviors
and increased self-directed behaviors (Möller et al., 2011; Table 6).
Similarly, maternal separation involves a dysfunctional glutamatergic
system (Takahashi et al., 2009). Since altered glutamate activity is
associated with increased oxidative stress, it is of interest that SIR
animals have significantly elevated frontal cortex and striatal
superoxide dismutase activity, decreased oxidized:reduced glutathi-
one ratio and increased lipid peroxidation (Möller et al., 2011).

8. Future perspective and summary

Current frontline pharmacological treatments and key approaches in
drug discovery and development in anxiety disorders is summarized in
Fig. 5. Monoamine reuptake inhibitors (e.g. SSRIs, SNRIs), GABA-A
receptor potentiators (benzodiazepines) and a 5HT1A partial agonist,
buspirone, form themain therapeutic options for patients suffering from
an anxiety disorder. These generally work with varying success across
different anxiety disorders except OCD which responds selectively to
SSRIs. However, while these drugs are effective agents, they have a
delayed onset of action e.g. SSRIs, and fail to provide an adequate
response in a significant proportion of patients (Ballenger, 1999, 2004;
van Ameringen et al., 2004). In addition they have significant side effect
and safety limitations, including abuse liability (benzodiazepines), sexual
dysfunction (SSRI), cardiovascular risk (SNRI) and nausea (5HT1A
agonist), which raise tolerability issues and lowers patient adherence.
Fromaclinical perspective it is clear that there is still a strongunmetneed
for more effective and tolerable therapeutic options.

In order to make gains in efficacy, such as speed of onset and
effectiveness in non-responders, alternative novel mechanism-based
approaches need to be considered (Fig. 5). HPA-axis and glutamate
system related molecular targets appear to represent the main areas
of interest, e.g. targeting themTOR pathway via the NMDA receptor to
improve treatment response in depression (Li et al., 2010). Although
other innovative approaches (e.g. neurokinin receptors) cannot be
excluded, the current analysis has provided a summary of the most
promising approaches. Whilst there is a strong scientific rationale for
the utility of HPA-axis related approaches such as glucocorticoid, CRF1
or vasopressin 1b receptor antagonists, the level of clinical validation
has remained limited despite a considerable period of drug discovery
and development effort. In contrast, glutamate system-based drug
discovery initiatives, such as mGluR2/3 agonism, have yielded
positive clinical data, although require further validation. It is
important to be cautious before drawing conclusions from these
findings, however, especially given the rather high level of attrition in
CNS drug discovery of drugs that explore novel mechanisms (Kola,
2008). The reasons for failure are multivariate and have been
discussed extensively in the recent literature (Wong et al., 2008)
but include factors such as inadequate target validation, lack of
translational biomarkers (for efficacy and target engagement), lack of
predictive reliability of animal models and issues in clinical develop-
ment such as strong placebo response and poor reproducibility.
Industry and academia need to collaborate more effectively to resolve
challenges facing psychiatric drug discovery. Some critical areas of
attention include greater focus on developing better insight on
molecular pathology through more effective genetic analysis, identi-
fication of translational biomarkers (efficacy and target engagement),
stratification and characterisation of patient subgroups to reduce
heterogeneity, as well as developing disease relevant models with
high face, construct and predictive validity (Wong et al., 2010).
Considering the latter point, while many of the glutamate receptor-
active ligands covered in this review have demonstrated noteworthy
anxiolytic activity in various anxiety tests, few have been evaluated in
comprehensively validated translational animal models, such as the
select group of pathophysiological models described in Table 6.

With respect to glutamate it is clear that modulation of both
metabotropic or ionotropic receptors offer promising opportunities.
Given the known role of glutamate and down-stream NO on
neuroplasticity, neuroprotection and degeneration (Meldrum, 2000;
McLeod et al., 2001; Spedding et al., 2003), as well as their ability to
rapidly modify monoaminergic responses, particularly via NO (Prast
and Philippu, 2001), glutamate-based pharmacotherapy can have
important therapeutic advantages that will benefit a number of
troublesome areas of treatment response, including slow onset of
action, lack of effective management of cognitive impairment, and
lack of adequate clinical response in poor responders (Harvey, 2008).
Potential limitations of NMDA receptor activators include mecha-
nism-based excitotoxicity. In this regard, PAMS may offer a better
approach if glutamatergic stimulation is required. Alternatively,
exploiting novel molecular cross-talk mechanisms to harness a
more physiological approach to stimulating glutamate receptors is
an attractive alternative, e.g. using AMPA PAMs to bolster NMDA
receptor function (see Fig. 3).

For antagonists there are concerns about NMDA receptor block to
evoke psychotic manifestations, as well as to negatively impact
affect and cognition. Here too PAMs and NAMs of both ionotropic
(e.g. AMPA receptor potentiators) and metabotropic glutamate
receptors would preferentially affect dysregulated glutamatergic
synapses with a lower potential for mechanism related side-effects,
e.g. the AMPA PAM CX516 (Goff et al., 2008). Another important
issue that is likely to arise for glutamate based approaches is
whether these agents will have sufficient efficacy to be suitable for
use as monotherapy or will they need to be given in combination
with existing drugs. Currently there is inadequate attention given to
this issue in the preclinical profiling of emerging glutamatergic
agents. It is important to bench mark, in a detailed manner across a
range of disease models, the profile of new glutamatergic agents
against frontline anxiolytic drugs to more clearly understand the
potential benefits and risks. Furthermore, combination studies
should be conducted in predictive animal models which would
also help towards risk/benefit analysis as well as target validation. It
is not only important to check the quality of pharmacological tools
used, but also to prudently access alternative non-pharmacological
approaches to build confidence in target validation. Transgenic
animals or interference RNA technologies may help in this regard.
For instance it is conceivable that differential effects may be
observed in anxiety indications where cognitive behavioral therapy
plays a positive role. Finally, considering the robust role for
monoaminergic systems in anxiety, it makes sense to consider
targeting combined monoaminergic-glutamatergic pathways in
treating anxiety disorders, such as dual serotonergic-nitrergic
actions (Harvey et al., 2010).

9. Concluding remarks

Encouraging evidence has emerged from both preclinical and
clinical research to support the glutamate system as a promising
pathway for discovering improvedmechanistically novel therapies for
the treatment of anxiety disorders, especially given the central role of
glutamate as a regulator of neuroplasticity. Scientific rationale exists
for modulators of both ionotropic and metabotropic receptors,
although based on currently available evidence, the latter approach
seems to be more attractive. In particular agonism at the mGluR2/3
seems to be associated with clinical efficacy, albeit in preliminary
clinical studies. Whether ionotropic and metabotropic glutamate
modulators would display differential or similar effects across
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different subtypes of anxiety disorder remains an interesting area for
future investigation. The availability of high quality pharmacological
tools needs to be coupled with access to disease relevant animal
models with strong predictive validity as well as translational
measures of molecular target engagement and efficacy. In order to
limit the potential for mechanism related side-effects, it is likely that
positive or negative allosteric modulation may yield a better
benefit/risk profile. Profiling of interaction with and differentiation
from current anxiolytic drugs needs to be investigated in a thorough
fashion to assist drug discovery. Finally, industry and the basic
research needs to collaborate to resolve barriers limiting progress in
psychiatric drug discovery, and particularly towards developing new
anti-anxiety agents.
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